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Boosted Surfaces: Synthesis of 3D Meshes
using Point Pair Generators in the Confor-
mal Model

Pablo Colapinto

Abstract. This paper introduces a new technique for the formulation of
parametric surfaces. As shown by Dorst and Valkenburg in [4], point
pairs in the 5D conformal model of geometric algebra can be leveraged
as generators of ”simple” orbit-inducing rotors. In the current work, null
point pairs, τ , are treated as surface and mesh control points which can
be linearly interpolated. Here, they are used to construct continuous
topological transformations of the form α + τ . Using this formula for
a simple boosting rotor, some basic algorithms are proposed, including
the boosting rotor which takes a circle of radius r to a line tangent to it
at point p, and the boost-with-a-twist which generates a Hopf bundle.
We will explore their effect when integrated in a field, and examine a
few techniques for defining such rotors in homogenous coordinates: the
translation of tangent vectors, the geometric product of points, and the
interpolation of point pairs. Applying these rotors to points and circles
provides an novel and efficient basis for creating boosted forms.

Mathematics Subject Classification (2010). Primary 15A66; Secondary
53C99.

Keywords. Conformal Geometric Algebra, Computer Graphics, Mesh
Warping, Point Pair, Lorentz Boost, Special Conformal Transformation,
Conformal Mapping, Surface Topology.

1. Background

5-dimensional conformal geometric algebra [CGA] is a compact and expres-
sive representation of 3-dimensional space and its admitted transformations.
A thorough explanation of the conformal model can be found in [6], and
a good introduction to the rotors (i.e. spinors) embedded in that represen-
tational model in [2]. Alternative geometries admitted by the model have
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2 Pablo Colapinto

been explicity investigated by physicists such as Anthony Lasenby (for in-
stance in [5]). In the fields of computer graphics and computer vision, much
attention has been paid to CGA’s encapsulation of rigid body movements
using dual lines to generate motors, for example in [3]. Less-explored is the
more complex transformation generator: the point pair, though a rigorous
mathematical treatment of logarithms and exponentials of point pairs can
be found in the 2011 paper by Dorst and Valkenburg[4], in which orthogonal
and commuting point pairs are shown to generate various “orbits”, includ-
ing knots, in 3D space. The geometric algebra graphics community has only
just begun to examine the warping capabilities of these non-Euclidean op-
erators, leaving thorough investigation of synthesis of boosted forms using
simple point-pair rotors eτ a still-unfinished task. Through consideration of
various formulations of boosting rotors and the topology of the shapes they
generate will hopefully encourage futher work in applying these methods
to specific design and engineering problems. Figures below were created us-
ing Versor, the author’s implementation of conformal geometric algebra for
graphics synthesis[1].

2. Introduction: Tangent Vectors at the Origin

Boosts – also called constant accelerations, transversions or Lorentz trans-
formations – are conformal operators which can straighten circles and bend
lines. They can be used to model the symmetries of relativistic physics and
electromagnetic fields, though here we will be considering their geometric
characteristics as shape operators. In the conformal model of R4,1 developed
by Li, Hestenes, and Rockwood and outlined in [6], boost operators are built
as an exponential of a tangent vector. Specifically, as described by Dorst,
Fontijne, and Mann in [2], we can create such an operator by combining a
scalar value of 1 with a tangent bivector generator t, itself formed by wedging
the origin no with a eucldiean vector v:

B = enov = 1 + nov (1)

This spinor, or rotor, is applied to other elements of the geometric al-
gebra using the normal ’sandwich’ product:

x′ = BxB̃ (2)

where x is a geometric element such as a point, circle, line, etc and B̃ is
the reverse of B. In the case that x is a circle, figure1 shows what happens
as we increase the length of euclidean vector v.

In figure 1 the tangent generator lies in the same plane as the circle
it is operating on. In the 5D conformal model such transformations are not
limited to the 2D plane. Figure 2 shows the result of transforming along a
tangent orthogonal to the plane of the circle.
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(a) (b)

Figure 1. σ
′

= BσB̃ with σ representing a unit circle at the
origin on the e12 (xy) plane and B = eλno∧e1 a boost in the
e1 (x) direction. a) The circle transforms into a line when
λ = 1. b) As λ increases past 1, the unit circle has turned
inside-out and reverses orientation. It converges on its own
center point as λ approaches infinity.

λ = [0, 1] λ = [0, 2] λ = [0, 4]

Figure 2. σ
′

= BσB̃ with σ representing a unit circle at
the origin on the e23 (yz) plane and B = eλnoe1 a boost in
the e1 (x) direction orthogonal to the circle (i.e. normal to
the plane of the circle). Surfaces are created by boosting σ
across a range of λ values. From left to right, the range of λ
values increases in each of the three surfaces.

3. Translated Tangents are Null Point Pairs

Generalized boosts which are not ’tied’ to the origin are sometimes built by
concatenating the above pure transversion rotors with translation, rotation
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and dilation rotors. Such concatenations are called special conformal transfor-
mations1. For instance, loxodromes2 partially generalize the transformation
by concatenating it with a translation: L = enoa+bn∞ = enoaebn∞ . We would
like to build some sort of intution about the 2-blade generators of the more
general concatenations, in order to develop a single, easily differentiable and
interpolatable rotor.

Figure 3. Various loxodromic transformations of the form eλno∧a+γb∧n∞ .

To generalize a boost, we can homogenize the transformation in 3D
space by translating the boosting operation itself. Using translators of the
form T = evn∞ = 1 − vn∞

2 we can transform elements of CGA using the
sandwich product:

B′ = T BT̃ (3)

The translation of the boost B = 1 + ot by the translator T yields a
scalar, a point pair, and five zero-valued quadvectors:

α+e12 +e13 +e23 +noe1 +noe2 +noe3 +e1n∞+e2n∞+e3n∞+e12E+
e13E + e23E + noe123 + e123n∞

where E is the Minkowski plane no ∧ n∞. Dropping the zero-valued
terms, we are left with a scalar and a point pair: a boost spinor at position v
in direction t. It makes sense to see the point pair here as the bivector part
of a rotor.

As mentioned by Dorst et al in [2], there is an intimate relationship
between tangent vectors and point pairs: namely, a tangent vector that un-
dergoes a translation away from the origin is a point pair with zero radius.
Note that such a zero-sized element will still have a variable weight deter-
mined by the length of the original tangent vector. We can write

τ = T tT̃ (4)

where τ is a point pair of zero radius, T is a translating spinor of the
form 1 + vn∞, and t is a tangent vector.

1In an effort to build up the concept of a curvature operation in homogenous coordinates,

this paper uses the notion of a generalized boost a bit more liberally than might be found
in a physics paper, where pure boosts are considered separately from translations and rota-

tions or dilations. Strictly speaking, these boosted forms may be more precisely described

as special conformal transformation forms, and boosting spinors likewise SCT spinors.
However the verb boost more accurately describes the mesh modelling technique that is

employed, as it relates to the active techniques of lofting or skinning a surface.
2Loxodromes, literally “skewed paths” in ancient Greek, are S-shaped Mbius transforma-
tions achieved by stereographic projection. See figure 3.
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With this formula we have a way of specifying a tangent generator at
any point, not just at the origin. But we want a spinor of the form α + τ ,
where α is a scalar value – so what scalar value do we add to it? Since boosts
at the origin are written as 1+t, and translating such a multivector according
to equation3 would leave the scalar value unchanged, we can assume for now
that we should just assign a value of 1 to our scalar. Our formulation of a
homogenous boost is therefore

B = 1 + kτ (5)

where k is a scalar valued constant. This result conforms with Dorst
and Valkenberg’s rules for the exponentialization of null point pairs. For
now, a simple topology we can make using equation 5 is a surface of negative
curvature as depicted in figures 4 and 5.

3.1. Surfaces of Negative Curvature

Let us examine how to build one such surface. Given a circle κ we can extract
the dual line axis λ on which it lies by contraction with infinity:

λ = −n∞cκ (6)

which wedged with infinity gives us the direction bivector Bn∞ of the
circle:

Bn∞ = λ ∧ n∞ (7)

and by taking the dual of this we can get the direction vector orthogonal
to the circle:

dn∞ = (Bn∞)∗ (8)

In an implementation, we can convert this direction vector to a tangent
vector by copying its terms, translate the tangent to some point on the axis
λ using equation 4 and form a spinor K using equation 5. Boosting the circle
κ gradually by K carves out the surface of a pseudosphere – that is, a sphere
with an intrinsic curvature of -1. Concatenating this transformation with a
twist creates a twisted pseudosphere of figure 5.

3.2. A Boost with a Twist: The Hopf Fibration

As the twisted psuedosphere of figure 5 can be constructed by a twist followed
by a boost, so can the famous hopf fibration be constructed by a boost fol-
lowed by a twist. The fibration maps the 2-Sphere to the 3-Sphere by treating
each point on the 2-Sphere as a circle. If the south pole is the base circle,
then the north pole is the axis of that circle. Thus we start by noting that
the fibration can be considered an spinor which takes a circle to its axis.
To construct this transformation, we compose a boost which straightens the
circle, followed by a twist which translates and rotates the boosted circle.

Explicitly, to map the point p with spherical coordinates θ, φ on a 2-
sphere to a circle fiber of a 3-sphere, we start with a circle κ at the south
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Figure 4. A pseudosphere built by boosting a base circle
along its axis. To generate the boosting spinor 1+kτ , trans-
late the tangent orthogonal to a circle to a point along the
axis and add 1. To generate the mesh, iterate transforma-
tions across a range of k (here the range is [0, 1]).

Figure 5. Translating the point pair generator along a dual
line generator at a rate equal to the pitch of the screw, allows
us to build Dini’s Surface, sometimes referred to as a twisted
pseudosphere.

pole (where φ = −π2 ) and a base axis Λ = n∞cκ (where φ = π
2 ) at the north

pole. We then first define the transversion or boost Bθ,φ which takes the base
circle to a line using equation 1:

Bθ,φ = 1 + kφnovθ (9)

where kφ = 1
2 + φ

π so that the resulting tangent term scales in the range
[0, 1] and where vθ is a unit vector rotating in the plane of the circle. Applying
B when φ = π

2 takes the circle to a line.

Λθ = Bθ,π2 [κ] (10)
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a) b) c) d)

Figure 6. The initial components of a Hopf Fibration can
be analyzed as a base circle and its axis. a) and b) Boost-
ing a circle into a line. c) Twisting the line to the axis. d)
Composition of the boosts followed by twists

with brackets R[x] used as shorthand for the full sandwich product

RxR̃.

The corresponding twist Tθ,φ can then be generated by finding the ratio
of the initial axis Λ with the line Λθ. For detailed analysis on how to find
logarithms of motors see for instance [8].

Tθ,φ = e
kφlog( Λ

λθ
)

(11)

The full transformation rotor K can then be defined:

Kθ,φ = Tθ,φBθ,φ (12)

Figure 7. Twistor meshes representing the 3-sphere Hopf
fibration generated by application of the transformation ro-
tor Kθ,φ onto an originating circle.
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4. Boosting Vector Fields

To better understand the transformational prowess of point pair generators
let us examine their effect on a simple 2D field of points. Figure 4d. shows
that a null point pair generates a simple dipole field. By summing such a
generator with dilation and translation generators (flat points and direction
vectors) one can also build sources and sinks. Sources and sinks are generated
by adding to the flat point (p ∧ n∞) component of the point pair: that is,
the e1n∞, e2n∞, e3n∞, and non∞ basis blades. By adding to the direction
vector only, the single dipole can be “split” into two critical points: adding
in the positive direction creates a real (non-null) point pair, and adding the
negative direction creates an imaginary (non-null) point pair. The resulting
orbits seem to corroborate the results of Dorst and Valkenburg’s work and
suggests the possibility of modelling electromagnetic fields purely in terms
of critical point pair generators of the field. It should be noted however that
the equations that follow are not accurate descriptions of physical behavior,
but rather can be used to generate fields of form.

Are other critical points possible? Perhaps by applying the bivector
split methods disscused in [4], we could also represent centers by adding in
dual line generators of rotation (though that solution is not presented here).
A focus, then, could be created by adding in a bit of rotation around a
dual line axis as well as subtracting out a bit of the flat point (to create a
sink). Hyperbolic critical points, or saddle points, do not seem to be directly
representable by point pairs.

The vector fields of figure 4 are created by a point pair τ at the center
of a grid of points. Each point p is transformed to a new location by an
amount inversely proportional to its squared distance. That is, for a point
pair generator located at x:

p
′

= fcen(eλτpe−λτ ) (13)

with λ = pcx and fcen(σ) a function that finds the center point of a
dual sphere σ. This essential center-finding function eliminates changes in
radii that result from the boosting of points.

4.1. Interpolation of Point Pair Generators

Now that we have a sense of how point pairs can generate fields, lets us
examine how these fields might combine to generate surfaces. In particular,
what happens when we sum more than one point pair? Given two or more
point pair generators in a field, we would like to sum their impact on every
position in the field. Now, there is a difference between linearly summing up
all the point pairs (weighted by their squared distance to the affected field
position) and then generating a single rotor from the result, as opposed to
generating a (weighted) transformation rotor for each generator and summing
up the displacements each one causes as is typically done in vector algebra.
Though the latter is more common, here, since we are primarily interested in
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a) b) c)

d) e) f)

Figure 8. A single point pair generator τ acts on a field
of points v. Equipotential contours tangent to the direction
field are shown as dotted lines. a) and b) A pure sink and
pure source formed by exponentialization of a flat point. c)
a pure dipole formed by exponentialization of a null point
pair in the y direction. d) and e) null point pair is split into
imaginary and real point pairs by adding positive and nega-
tive amounts of the y direction vector. f) An extra amount
of source is added to a null point pair.

creating forms intuitively and consistently, the first method (sum all point-
pairs and then transform once) works well and provides consistent results.3

It is also important to note that by using this “simple” method of linear
interpolation we are not creating suitable bivector splits as outlined in [4].
Typically in our case:

3In a sense, summing up point pairs before exponentializing has an averaging or smoothing

effect – higher frequency perturbations are eliminated. Here we are interested in what forms

we can create through the simplest methods available. The most “straight forward” (e.g.
easiest) route is to weigh each point pair based on its distance and exponentialize that.

This method creates evocative boosted forms that are no less difficult to control than using
a vector-sum-of-displacements integration technique.
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a) b)

Figure 9. In each image, two dipole generating point pairs
act on a field. Their equipotential (dotted) lines are also
drawn. Two integration methods are examined: a) Summing
generators first, and then creating a single rotor displace-
ment. b) Calculating displacements for each generator and
then summing the displacements. Method b) is standard in
vector field topology. Method a) is the simplified approach
used in this paper.

e τ1+τ2 6= eτ1eτ2

τ1τ2 6= τ2τ1

This is because null point pairs only commute if they are located at the
same point in space, and we are explicity spreading them across a field. Note
also that since we treat B = τ1 + τ2 as an affinely interpolated 2-blade we
still calculate our rotor using:

e−B/2 = cosh(B/2)− sinh(B/2) (14)

solving sinh(X) using the rules for imaginary, real, and null X also
defined in [4]. With these caveats and disclaimers laid bare, we proceed to
examine the results of our approach on mesh warping. We start with some-
thing quite basic: we define a line contour by interpolating across a two null
point pairs. The results, shown in figure 4.1, reveal an intricate relationship
between the orientation generating point pairs the curvature of the resultant
contour. Two null point pairs τ1 and τ2 are linearly interpolated to create
τ

′
= (1− t)τ1 + tτ2 with t in the range [0, 1]. The resulting point pair, τ

′
, is

used to generate a boosting rotor B = e−τ
′
/2. That rotor is applied to points

p on the straight line connecting the two pairs.
Thus we define a boosting field by building a field of point pairs gen-

erators of zero size (i.e. pure translated tangents), and then interpolating
between them using basic euler integration. 2D surface patches can then be
generated through bilinear interpolation four null point pairs. A point on a
surface is evaluated as



Boosted Surfaces 11

a) b) c) d) e)

Figure 10. a) Point pairs τ1 and τ2 and their osculating
circles. b) Non-null point pairs generated by affine combina-
tion of τ1 and τ2 . c) Transformation of the line connecting
the pairs. d) and e) Different orientations. The transformed
line and the interpolated pairs (shown as dots).

p
′

uv = fcen(BuvpuvB̃uv) (15)

where Buv = eτuv is the boosting rotor evaluated at u, v using bilinear inter-
polation and fcen(σ) is our centering function which returns the center point
of a dual sphere σ.

Figure 11. Surface patches generated by a field of boost
spinors. Point pairs are first created by translating tangents
to the four corners of a grid. At each vertex of grid, spinors
are built by bilinear interpolation of the corner point pairs.
Boosting rotors are then used to warp that point on the grid.

This approach to surface generation can be considered an extrapola-
tion of the method using twist fields explicated by Wareham, Cameron and
Lasenby in [7]. The key difference in methods is that by interpolating point
pairs we are directly manipulating curvature at specific points over the sur-
face, rather than interpolating between normals. Both are parametric meth-
ods offering intriguing alternatives to nurbs-based modelling.

For instance, an n-sized field of point pairs can also be used to warp a
pre-existing mesh, using a sum of distance-weighted point pairs. The point
pair generator to be applied to a point p is then a linear sum of n point pairs:
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τp =

n∑
i

1

−2(pcx)
τxi (16)

with τxi a null point pair at x. Figure 4.1 shows various warpings created
using this method. Each generating point pair boosts meshes along a tangent
curve.

a)
b)

c)

d)
e) f)

g)

h)

i)

Figure 12. Warping of a plane (a) and a sphere (b-i) mesh
by integrating multiple point pair generators. To transform
each point, each generator is weighted based on the inverse
of its squared distance to the point.

5. Curvature Control

From the above formulations we can begin to see the usefulness of treating
boosting spinors as curvature operators. To solidify this role, let us investi-
gate how to parameterize the curvature at a specific point p. The gaussian
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curvature of a surface at a point p is the product of the curvature of its small-
est and largest osculating circles. The curvature of a circle is the inverse of
its radius. Our goal is therefore to find the operation which can adjust the
radius of an osculating circle while keeping the surface point fixed. To do this,
we need to be able to gradually enlargen a circle into a line while fixing one
of its points, and we would like a specific formula given a desired curvature.
Here we identify the algorithm for continous transformation of curvature at
a point p to a circle with curvature κ.

Figure 13. A line is ’bent’ into a circle. The generator of
the transformation is a tangent vector translated to a point
on the line.

Given a line Λ, we can bend it into a circle of radius r and curvature
κ = 1

r by applying a boosting spinor of the form:

B = 1− κτ

2
(17)

where τ is a zero-sized (null) point pair created by translating a unit
tangent vector orthogonal to the line to some point p on the line, and then
weighted by the negative target curvature (the inverse of the radius). By
flipping the originating tangent vector around, we can use the same formula
to create a boost that takes a circle with curvature κ and straightens it into
a line. The p−translated and κ-weighted tangent τ generates a 2κ curvature
operator at p.

5.1. Surface Curvature

This ability to specify curvature at a point p with an operator B suggests that
we can build UV surface meshes by interpolating curvature control points.
That is, we want to construct a surface from a set of κnτn operators. Consider
local curvatures κu and κv in orthonormal directions u and v on a plane
surface X. We generate a transforming boost in the u, v neighborhood of a
point p on X by summing null point pairs from vector v normal top and
translating in the u, v directions.

Bκuκvu,v = eκuτu+κvτv (18)

where τu = Tu[nov] and τv = Tv[nov]. It is important to note that the
interpolated 2-blade exponent is not always null in this case, and therefore
equation 17 does not hold. The boosting rotors are therefore calculated us-
ing the rules outlined by Dorst and Valkenburg in [4] when the point pair
exponent is non-null. Let us also reiterate that equation 18 does not satisfy
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orthogonal criteria as laid out by those authors, since the terms do not com-
mute. For now, we can explore the shapes that such a formulation provides
and see if they can be controlled intuitively. Figure 5.1 shows the results of
such a formulation, which allows us to independently control u and v direction
curvature at a point.

a)
κu > 0
κv = 0

b)
κu > 0
κv > 0 and 6=
κu

c)
κu > 0
κv = κu

d)
κu > 0
κv < 0

Figure 14. Local curvatures defined using equation 18: a)
parabolic, b) elliptic, c) umbilic and d) hyperbolic.

Integrating four such generating u, v point pairs allows us to build up a
nurbs-like surface patch, as in figure 5.1. The formulation requires integrating
the u curvature and v curvature separately, before adding them together using
equation 18. That is, for each generating null tangent at the corners, we
translate the tangent in the u direction along the patch and then integrate
with the others using bilinear interpolation. We do the same for each tangent
in the v direction. Finally we add both resultant point pairs together, and
generate a boost from that sum.

Figure 15. Surface patches created through independent
control of curvature in the u and v directions.
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6. Coda: The Geometric Product of Points

In 3-dimensional Euclidean geometric algebra it is the ratio of vectors and
bivectors that generate continuous transformations. One might wonder, what
geometric meaning can be prescribed to the ratio of points? This poses a
difficulty: calculating the ratio of points is not possible since the inverse of
a point is a null value.4 We will therefore consider the geometric product
of points instead. As might be expected, these products result in the same
scalar + bivector formulation just described. That is,

pap̃b = papb = s+ pa ∧ pb (19)

where s is a scalar and pa∧pb a point pair. Thus the geometric product
of points in the conformal model represent boosting operators. Since points
can expand to become dual spheres, as well as have their weights modified,
there is clearly much to investigate in regards to their geometric products
and what sorts of transformations they admit.

Our question has now become: given two null points, what is the con-
tinuous transformation they embody? Let us first investigate the simple case
of two points operating upon their dual circle: that is, two antipodes at the
poles operating upon an equator. Through experimentation we find that ad-
justment of the weight of the null points, we can directly adjust the curvature
of the transformation. Our formulation is thus:

K = 〈paw1
pbw2
〉0 + λ〈paw1

pbw2
〉2 (20)

where λ is a scalar range we take in the range [−1, 1] and w1 and w2

are weights assigned to the no element of the points pa and pb.

7. Conclusion

CGA offers the graphics researcher the opportunity to discover and exper-
iment with powerful methods for the synthesis of forms. In this paper we
have explored some synthesis techniques through bending and warping using
boosting rotors generated by point pairs. We have seen that such boosting
operations can be used to carve out canonical manifolds such as the pseu-
dosphere, Dini’s surface, and the Hopf fibration. We have shown specific
formulations for transforming curvature at an arbitrary point. Interpolating
between point pair generators in a field, we were able to propose a novel de-
sign technique for the generation of organic-looking surfaces. Looking deeper,
we began to establish a protocol for parametric design through curvature con-
trol. Finally, we considered primitive shape operators formed by the geometric
product of weighted points. It is hoped that such purely formal investigations
will provoke future exploration into shape operations with point pairs. For

4An anonymous reviewer of this paper has pointed out that the ratio of null points is not

defined since points are not invertible. Computing p−1
b requires one to multiply a point by

its own reverse, which results in a null value. We sidestep this issue through slight abuse
of concept: we will consider the geometric products of points instead of their ratio.
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w = 1
w = .5

w = .1
w = 0

w = −.1

w = −.5

Figure 16. Meshes generated by continuous transforma-
tions of a circle equator (in solid black). Points at the poles
(extracted by taking the dual of the circle) are weighted by
assigning w to the no components of each. The transform-
ing spinors are then generated by multiplying together the
two points and linearly interpolating the point pair bivector
part of the product from −1 to 1. As the family of spinors
is applied to the circle, we can boost a surface. Note the the
final surface, on the right, is nearly toroidal. At w = −1 the
form collapses back into the equator.

instance, one could use the commutator product of a point with a point pair
to establish a curvature differential operator, or evolve a network of weighted
points for the construction of a new topological grammar. A formulation of
implicit surface design using boosting operators is also desirable. The possi-
bility of more complicated topological operations and catastrophes should be
explored, especially those with biological significance, such as invagination
and intussuceptions. Ultimately, such explorations could inspire a range of
new boost-based tecniques for artistic and scientific modelling, from simulat-
ing morphogenetic dynamics to designing pneumatic structures.
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