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Abstract

Articulating Space: Geometric Algebra for Parametric Design – Symmetry, Kinematics, and

Curvature

by

Pablo Colapinto

To advance the use of geometric algebra in practice, we develop computational methods

for parameterizing spatial structures with the conformal model. Three discrete parameteri-

zations – symmetric, kinematic, and curvilinear – are employed to generate space groups,

linkage mechanisms, and rationalized surfaces. In the process we illustrate techniques that

directly benefit from the underlying mathematics, and demonstrate how they might be ap-

plied to various scenarios. Each technique engages the versor – as opposed to matrix –

representation of transformations, which allows for structure-preserving operations on ge-

ometric primitives. This covariant methodology facilitates constructive design through geo-

metric reasoning: incidence and movement are expressed in terms of spatial variables such as

lines, circles and spheres. In addition to providing a toolset for generating forms and trans-

formations in computer graphics, the resulting expressions could be used in the design and

fabrication of machine parts, tensegrity systems, robot manipulators, deployable structures,

and freeform architectures. Building upon existing algorithms, these methods participate in

the advancement of geometric thinking, developing an intuitive spatial articulation that can

be creatively applied across disciplines, ranging from time-based media to mechanical and

structural engineering, or reformulated in higher dimensions.
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Chapter 1

Introduction: Transforming Expression

1.1 Background

We still call numbers ‘figures’, i.e. shapes.

– Arthur Koestler, The Sleepwalkers1

Today, researchers have access to a universal framework for geometric reasoning – one

that provides a proper mathematical language of form and transformation with which to share

their ideas. Geometric algebra, the mathematics applied throughout this document, provides

this framework. With its internal algebraic mechanisms geared towards representing prim-

itives such as circle, line and plane, as well as movements such as rotating, twisting and

bending, geometric algebra clarifies spatial concepts across diverse fields of research. This

comprehensive model of geometry has been applied to both physical and virtual domains –

from quantum physics, electromagnetism, and astrophysics, to robotics, machine learning,

and computer graphics – and its potential users include anyone who works with spatial sys-
1From his text on the history of humanity’s comprehension of the cosmos, Koestler here is referring to

the influence of the Pythagoreans, who were possibly the first to understand the geometry behind numerical
operations. That numbers are forms themselves is central to understanding synthesis with geometric algebra.
See also Garret Sobczyk’s text expanding the “geometric concept of number” [126].
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tems.2 Geometric algebra is the syntax of space, offering its practitioners a coherent3 analysis

of structure, form and movement.

Using this syntax, the development of expressions and processes to generate spatial struc-

tures on a computer represents a specific strategy for parametric design, where the relation-

ships between geometric entities and operations serve as inputs to a system for configuring

form. These structures may remain purely virtual - a flapping wing in a video animation or

a plant-like tendril in a digital print – or they may be manufactured and deployed in the real

world (as a stent, tent, antenna, bridge or building, etc).

This dissertation illustrates several algorithmic techniques for the synthesis of structures

with geometric algebra. Using a computer to model our constructions, we select three para-

metric systems to synthesize de novo – symmetry groups, kinematic mechanisms, and curvi-

linear surfaces and volumes – and explore how each of these parameterizations enables a wide

range of spatial articulation.

1.2 Motivations

If you want to see, learn how to act.

– Heinz von Foerster

How can we express structure with geometric algebra? To answer this question we must

determine what mechanisms the algebra provides, what parameters to structure these mecha-

nisms express, what structures can be designed with these parameters, and what forms these

structures can take. As an exploration of a system of processes at play in the mathematical
2While it has become common to find the term ‘spatial sciences’ used specifically in regards to geospatial

studies, here we use ‘spatial systems’ to include a more general category of study that relies on or advances
spatial concepts. That is, any static or dynamic configuration of points, primitives, or operators on a real or
simulated manifold, including n-dimensional point clouds, meshes, function spaces, symmetry groups, mecha-
nisms, orbitals, vector fields, architecture, imagery, and organic and inorganic material, etc.

3In his preface to New Foundations for Classical Mechanics [66], David Hestenes, the central promoter of
the unifying modern day geometric methods that are used in this text, posits the need for “externally coherent”
methodologies so that scientists can face less noise as they navigate across fields of research.
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composition of structure, form, and movement, our question is morphological in nature.

The expressivity of geometric algebra enables constructive design. Constructive design

is a methodology for developing techniques and pedagogy to build complex spatial arrange-

ments from simpler forms. Practicing constructive synthesis facilitates deconstructive anal-

ysis, helping to build intuitions and methodologies that can be applied to a variety of design

problems. With a constructive design system, implementation details enlighten rather than

obfuscate applications, providing a mechanism for developing new ways of seeing the real

world around us.

Geometric algebra is characterized as expressive because it encodes spatial relationships

in a complete, compact, and composable way, exhibiting:

• Universality: the capacity to encode both Euclidean and non-Euclidean geometry.

• Elegance: the tendency to be succinct and coordinate-free.

• Covariance: the property of preserving structures under transformation.

This last component of expressivity – covariance – signals a proper encoding of geomet-

ric transformations. In 1872 Felix Klein presented his Erlangen Program4, which classifies

geometries in terms of the group of transformations admitted into a space (e.g. projective,

affine, conformal, orthogonal – see Figure 1.1), thereby prioritizing process over form as the

object of study; geometry is active. These transformations – a type of morphism – operate

on subspaces, and are characterized by the particular geometric properties they leave invari-

ant. Furthermore, our algebraic structures – which include both subspaces and the morphisms

themselves – should behave consistently under these transformations: results should not de-

pend on whether we twist the algebraic structure as a whole or each of its components sep-

arately (see Figure 1.1). It is this structure-preservation under the process of transformation

that we call covariance. To design structures in this way – as a series of structure-preserving
4For an English translation see [84]
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Transformation Preserved Property

Orthogonal Distances and Angles

Affine Parallelism and Ratio

Projective Flat Elements and Cross Ratio

Conformal Angles

Table 1.1: Geometric transformations are covariant morphisms on subspaces that leave cer-
tain properties invariant. In this table, the subspace being transformed is a circle.

Figure 1.1: One example of covariance is the outermorphism: the twisting of the circle
through three points is equivalent to the circle through three twisted points. If R[x] is a twist-
ing transformation and pa ^ pb ^ pc a circle through three points, then R[pa ^ pb ^ pc] =

R[pa]^R[pb]^R[pc]. As another example, the full geometric product is also preserved un-
der transformation: R[ab] = R[a]R[b] – or, in other words, the rotated product of vectors is
equivalent to the product of rotated vectors.

transformations in some metric – allows us to work with space as a trustworthy operator it-

self, and to hone our geometric concepts knowing that our efforts will be generalizable to

other problems formulated in other dimensions. With this added consistency comes access

to other fields of research outside our current domain, such as quantum mechanics, optics, or

relativity, guided by a single mathematical language of space that can be extended and shared.
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1.3 Problem Definition

The obstacles of achieving a facile relationship of people and things seems to

inhere not so much in the structure of things themselves as the structure of our

ideas and values.

– Ron Resch, The Topological Design of Sculptural and Architectural Systems,

1973.

We have at hand a single mathematical apparatus a student can master to explore the use of ge-

ometric reasoning in practice. Yet despite the natural coherence between geometric concept,

algebraic representation, and computerized form that geometric algebra provides, familiarity

with the apparatus is limited.5 In particular, the use of geometric algebra as a software tool

for computer-aided geometric design is not yet a well-established field of study. As of this

writing, none of the leading platforms in Computer-Aided Design (e.g. AutoDesk, Solid-

Works, Rhino3D), 3D animation (e.g. Houdini, Maya, 3Ds Max, Blender), or creative coding

(e.g. OpenFrameworks, Processing, Touch Designer, Cinder) have geometric algebra pack-

ages available. Tools are restricted to the more mathematically inclined users of MATLAB

and Mathematica. Appendix A offers an overview of GA software libraries.

The reasons for this lack of adoption in digital design are varied. Some will trace it to the

fact that the vector analysis of Gibbs and Heaviside won the attention of mathematicians in

the early 1900s, and may point to the resistance of learning a new branch of math: much work

has already been accomplished to design structures with matrix transformations, Bézier and

B-Spline techniques, and algebraic geometry.6 Others may point to the as-of-yet unfulfilled
5Attendance numbers at the most recent international conference on Applications of Geometric Algebra in

Computer Science and Engineering (as of this writing, AGACSE 2015 in Barcelona) were not much greater than
the original in 1999. With little exception (Eduardo Bayro-Corrochano’s cybernetics laboratory in Guadalajara
is one) there are no research centers dedicated strictly to the advancement of geometric algebras, and prac-
titioners tend to work independently or collaborate by electronic communication. Researchers in the field –
from physicists to computer graphics programmers to geometers - frequently lament the lack of adoption of this
versatile system for spatial articulation.

6As opposed to geometric algebra which works directly with n-dimensional forms, algebraic geometry pa-
rameterizes curves and surfaces with polynomials in terms of coordinate coefficients.
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need for a discrete geometric calculus with which to analyze surfaces on a computer, or that

the conformal model itself was not applied to computer graphics until 2001, or that it is

difficult to design an efficient implementation.

As a result, most geometric computing software is built without geometric algebra. Ex-

isting algorithms are dominated by matrix representations of transformations and coordinate

representations of vectors, encouraging an over-reliance on linear algebra and an unneces-

sary decomposition of geometry into 1D systems. In a presentation entitled Geometry and

the Design of Structures7, Bill Baker – the structural engineer behind the tallest8 building

in the world – has suggested the dependance on matrices limits on our ability to design

with geometric thinking. Baker flashed a slide of a charging rhinoceros9 to illustrate his

position that computational geometry software, with its under-the-hood matrix formulations,

was trampling intuitive design. The disconnect between the geometric reasoning and matrix-

based computing stems from the fact that there is nothing inherently geometric about a matrix

(excepting its rectilinearity – see Figure 1.2). Meanwhile, in [93](p13), Li points to two de-

ficiencies of expression of the typical Cartesian decomposition of geometry into coordinate

systems: the inability for these 1D systems to adequately represent invariance or covariance

of the represented geometry under transformations, and the tendency for algorithms to ex-

plode in complexity under the hood.

In practice these representation problems – poor structure preservation and unmanaged

complexity – mean that manipulating spatial relationships on a computer requires jerry-rigged

techniques pulled from a toolbox of non-compatible parts, and practitioners who work with

spatial concepts are distanced from the implementation details. Geometric algorithms are het-

erogeneous combinations of real, complex, matrix, and tensor algebras heavily seasoned with

trigonometric functions, mixed in ways dictated more by the quest for code efficiency than by
7Proceedings of the International Association of Shell and Spatial Structures, Amsterdam, 2015.
8The Burj Khalifa in Dubai, tallest as of 2015.
9His implicit reference was to the powerful Rhinoceros 3D, a popular modelling software tool for architec-

tural geometry.
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the spatial concepts they claim to model.10 Vector algebra (addition, dot and cross product)

is used to calculate mechanical forces, matrices (rotation, translation, shearing) for Euclidean

transformations and projective geometry (except quaternions for 3D rotations), Plücker co-

ordinates for robotics (twisting and affine transformations of lines), complex numbers are

used for electromagnetic wave propagation (polar coordinates, magnitude, and phase), tensor

algebras and exterior calculus for differential and surface geometry (divergence and curl),

combinatorics for topology, Lie algebras for symmetry groups. While these mechanisms

function accurately in their respective applications, instances of them in a computer program

do not share membership within one single coherent algebra for construction, and so do not

compose11 well with each other. Implementation details involve extracting particular coordi-

nates from particular mathematical models, resulting in software that is laborious to develop

and maintain, and not easily generalizable to other problems or spaces. Nor does knowledge

of one ease the learning of another. For instance, a wide divide lies between the mathemat-

ics of geometric design used for computer-assisted modelling of a 3D object and the matrix,

Lie, or Plücker algebras used for controlling the robotic movements to fabricate it – differ-

ent branches of mathematics are applied in simulation and fabrication phases of the same

object.12

David Hestenes has repeatedly pointed out that this incoherency of expression guarantees

inefficient learning. From the perspective of creative exploration of form, the absence of a

geometric algebra toolset limits the digital practitioner to non-constructive methods. An in-

dividual problem task – tiling a space, modelling a folding process, constructing a linkage

mechanism, designing a doubly-curved shell structure, weaving a pattern – is tackled sepa-
10One notable exception to this trend is the push for a unifying discrete exterior calculus for computer graph-

ics at CalTech. Another is of course the geometric algebra explained in the current work. There is a continuing
struggle within the geometric algebra community, and surely as well within the discrete exterior calculus com-
munity, to convince newcomers to spend the time necessary to learn it. Exterior calculus, it should be noted, is
a subsystem of the more encompassing geometric calculus.

11Functional programming styles, such as found in Haskell or O’Caml languages, help in the design of com-
posable algorithms. They do not themselves answer the question of how to represent geometric concepts.

12This schism is mirrored in the arbitrary division of computational geometry into combinatorial (geometry-
based) and numeric (algebra-based) methods, a common division in mathematics lamented by Klein himself.
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Figure 1.2: Rx, Ry, and Rz are some typical rotation matrices used in computer graphics.
Matrix A can used to multiply a vector over the plane ax+ by+ cz = 0. While there are
patterns in the matrix form of transformation, there is little geometric content and no reason
why anyone should be able to deduce what they do just by looking at them, let alone work
out how to construct them without a reference manual. Also, notice the high-amount of
redundancy in the number of 0 terms and repetition of the trigonometric entries. This notation
is not expressive.

rately and without recourse to borrowing algorithms developed specifically for another task.

This lack of constructivity negatively affects potential collaboration. Because no singular

strategy for geometric computing informs individual tactics, participation in the design of

complex spatial structures is limited to specialists who have mastered particular tasks.

Encouraging participation in an alternative spatial computing practice requires develop-

ing its power of raw synthesis – demonstrating how geometric algebra can express complex

form with sheer formula. The specific advantages of using GA as an engine to generate new

structures requires further investigation and publication. Synthesis techniques and software

tools that implement them must be developed, so that they may be experimented with. Since

geometric algebra has been used successfully to solve wide range of engineering and com-

puter graphics problems, existing algorithms and geometric constructions should be corralled

for the distinct purpose of generating structures. Many spatial articulations remain to be ex-

pressed. The generic generative geometric algebra we will explore is capable of creating a

wealth of expressions from its own internal syntax, and many discoveries await the patient

student.
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1.4 Goals

The father of the arrow is the thought: how can I expand my reach?

-Paul Klee

This document addresses one requirement for the study of geometric algebra as a tool in

computational design: more synthesis techniques are needed. Detailing the process of con-

struction with geometric expressions will increase familiarity with the mathematics, and re-

duce dependence on matrices and coordinates. The challenge of software implementation for

synthesis is addressed in the accompanying code base at

github.com/wolftype/versor

and in Appendix A. We noted that another obstacle to computational design with GA is the

absence of a fully developed discrete geometric calculus with which to work with

differential geometry. This is not directly addressed here, however some tangential

contributions to that effort include the rationalization techniques of Chapter 6.

We propose that extending the practice of geometric algebra will

• open new geometries to experimental exploration

• increase familiarity with the mathematical system

• advance the mathematical system

• develop geometric intuition

• facilitate transdisciplinary collaboration

• enable novel designs of spatial structures

9
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Developing Technique

To illustrate and advance the expressive capabilities of geometric algebra in producing form,

we will use the conformal model to synthesize spatial systems. We construct three param-

eterizations of spatial systems – crystallographic, kinematic, and curvilinear – by way of

three different techniques – transformation, constraint, and rationalization. We select these

systems because they each require different geometric reasoning tactics and yet can all be

expressed within the unifying framework of conformal geometric algebra. Thus while the

systems are typically given separate treatment in computational geometry texts, we aim to

show that methods developed in the construction of one can be applied to the construction of

another. This not only sheds light on the versatility of GA, but in turn uses GA to shed light

on the shared geometric concepts that can be used to govern these three types of structure.

Many individual components of the larger algorithms contained herein are present in the

literature referenced at the beginning of each chapter, however particular details are worked

out here for the first time, especially in terms of procedures and transformation sequences.

As we aim to present a self-contained manual explicating various techniques for the synthesis

of spatial articulations, in Appendix A our programming implementation details reveals a

technique for encoding the core generator of this algebra. The online code base provides this

in under 200 kilobytes.

Beyond the screen, the productive nature of our algorithms extends into potential phys-

ical manifestations; we parameterize our virtual models using spatial systems that support

real-world manufacture – material, robotic, and architectural. We aim to demonstrate a con-

tribution to the field of computer-assisted design, where our algorithmic methods can be

embodied as physical structure. The techniques are applied to systems that could result in

structures built in the physical world.
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Developing Pedagogy

Each step in the sequence of our exploration – from symmetries to movements to surfaces –

incorporates additional features of the mathematics, while simultaneously relying on meth-

ods delineated during the previous step. The sequence of articulations represents a pedagogy.

As we investigate the implementation details of these three parameterizations of 3D struc-

tures, we build a general toolset for framing spatial structures in terms of their sub-geometric

components. In detailing these methods for spatial synthesis, we help to demarcate a com-

prehensive strategy for digital practice. This building-block process is similar to Paul Klee’s

Pedagogical Sketchbook [83] or Wassily Kandinsky’s Point and Line to Plain [82], where

primitive shapes are activated into motions in order to develop expressibility.

This focus on movement is critical to learning. A core feature of geometric algebra is the

representation of transformation as a type of number called a rotor or spinor, rather than the

generic matrix grids of Figure 1.2. In his introduction to New Foundations in Classical Me-

chanics [66], David Hestenes, who reinvigorated interest in geometric algebra in the 1960s,

explains that the use of spinors instead of matrices for calculating transformations is both

more efficient computationally and more expressive theoretically – a workflow optimization

that serves as a bridge to advanced topics. To leverage this benefit, we must get a better feel

for what these rotors do, and so we must see them in action (“if you want to act, learn how to

see”).

Our computational approach to geometric design of spatial structures is constructive.

The constructive computational design is one that is expressive in the following ways:

• Generic / Complete / Universal: A wide range of morphologies are shown to be ar-

ticulated. In addition, the mathematical relationships are expressable, like many good

algebras, by words. The methods used not only build on each other, but also inform

constructions in other dimensions or non-Euclidean spaces.

• Geometric / Compact / Elegant: Symbols represent geometric primitives. Exponen-
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tials represent transformations. There is no need for convoluted syntax built with matri-

ces and trigonometric functions. A self-sufficient semantics is the minimum necessary

to induce a wealth of resulting methods. Spatial relationships and transformations are

built mathematically from the ground up, “from scratch”.

• Generative / Composable / Covariant: Algorithms developed for a design are reusable

in another. Reliance on geometric primitives such as circles and spheres as components

ensures that design parameters are modular and therefore reconfigurable. Transforma-

tions are the central mechanism defining form, through a system that honors covariance.

1.5 Methodology

Our studies should lead to constructive thinking.

– Josef Albers

Our current task is to implement a variety of techniques for the generative synthesis of spatial

structures using geometric algebra. While this a text in mathematics applied to computer-

assisted design, it is important to emphasize the fact that no previous mathematics is assumed

of the reader. Since synthesis technique is our central concern, no mathematical proofs of

the formulas developed are provided, and readers interested in such justifications are recom-

mended the list of references in Section 1.6. Instead, here the visualization of form serves

to demonstrate functionality, providing proofs-of-geometric-concept through construction of

images. We will focus on the process of generating structures and suggest some potential

uses in real-world applications.

Each Chapter builds upon algorithms found in the literature, providing new details on im-

plementing parametric systems. We outline the mechanics of geometric algebra and the con-

formal model in Chapter 2. In Chapter 3 we use transformations to detail the implementation

of a paper written by David Hestenes and Jeremy Holt on the use of CGA in formulating the
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230 3D crystallographic space groups [73], and propose the use of such groups in designing

symmetric shapes and tensegrity systems. Moving from static to kinematic forms, Chapter

4 investigates the use of a particular screw transformation called a motor to create linkage

mechanisms and simple folding apparatus, introducing precise methods for inverse kinemat-

ics of a chain of revolute joints, and offering a novel solution to the design of the canonical

Bennett mechanism. Articulated structures are proposed based on networks of such mecha-

nisms. Chapter 5 explores continuous transformations of these motors to create interpolations

and twisted deformations of forms, and extends the results to conformal transformations in

order to present examples of knotting and fibering, including a unique formulation of the

Hopf fibration. This serves as a segue to Chapter 6 where we apply conformal transforma-

tions to the building of cyclidic nets, which are piecewise smooth surfaces made from circular

arcs. In Appendix A, we outline how this general approach to spatial calculations can itself

be generated by implementing its formal structure using C++ template metaprogramming.

Implementing geometric algebra software that is both generic and efficient is itself a lesson

in computer science.

Video animations of much of the work developed here can be found online at:

www.vimeo.com/wolftype

and updated algorithms, code, and any revisions of this document at:

versor.mat.ucsb.edu

and

github.com/wolftype/versor.

13

https://vimeo.com/wolftype
http://versor.mat.ucsb.edu
http://github.com/wolftype/versor


1.6 History

Geometric Algebra is no less than a universal mathematical language for pre-

cisely expressing and reasoning with geometric concepts.

– David Hestenes [68]

Louis Couturat’s 1901 treatise La Logique de Leibniz makes clear the grand philosopher’s

17th century belief in a holistic “geometric calculus” of analysis and synthesis where intuition

and precision can operate together to figure the articulation of machines. Writing to his

teacher Huygens in 1679, Leibniz states “I think we still need another, properly geometrical

linear analysis that will directly express for us situation, just as algebra expresses magnitude,”

that can “represent figures and even machines and movements with characters” such that, as

he expounds in a later letter to Marquis de L’Hôpital “calculations in it are true representations

of shape and lead directly to constructions.” 13 Descartes’ analysis falls short of this goal of a

metric-indepedent disambiguation of situation (a point in space) from magnitude (a vector).

Möbius’ barycentric calculus and Hamilton’s quaternions were other attempts at enabling

operations on geometric elements. Couturat’s text eventually points to Hermann Grassmann,

the mathematician who, without knowing of Leibniz’s vision of a calculus for geometric

reasoning, executed it 200 years later.

Grassmann’s theory of forms, introduced in [59, 60] as a theory of extension, provides the

backbone of how to organize spatial concepts mathematically, and serves an elegant way to

construct algebraic elements of direction, area, and volume. Grassmann endeavors to explain

his motivations in his 1862 re-writing of his misunderstood 1844 treatise, by explaining that

his theory is one “which extends and intellectualizes the sensual intuitions of geometry into

general, logical concepts...” and “could be said to form the keystone of the entire structure

of mathematics.” This universal model of space was intended to be profound, emphasizing
13Chapter 9 addresses Leibniz’s quest for geometrical analysis. An 2012 English translation by Donald

Rutherford and R. Timothy Moore is available online [30].
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the relational aspects of the mathematics. In an essay detailing the genealogy of theoretical

biology, Gare argues that “what needs to be emphasized is that Grassmann’s work continued

the tradition of Schelling, Weiss, and his father, Justus Grassmann, the goal of which was to

provide the means to grasp the self-formation of nature, including life.”[57]

In 1878 William Clifford formulated Grassmann’s work on geometric relationships into

a geometric algebra of transformations [24]. Clifford demonstrated how Grassmann’s foun-

dational associative algebra of extensions induced William Hamilton’s invertible algebra of

rotations (the quaternions, which can spin vectors in 3D space). Because of their ability to

encapsulate both dimension and transformation, Clifford referred to these mathematical spin

structures as geometric algebras. Articles by Clifford himself [26, 25] help to round out the

philosophy behind spatial reasoning. A summary of the history of the geometry leading to

Clifford’s geometric algebra can be found in Hestenes [66], Sobczyk [126], and Li [93], and

of algebras in general in Van der Waerden [133].

With the notable exceptions of Giuseppe Peano, who re-articulated Grassmann’s work

in Geometric Calculus [108], and Alfred North Whitehead, who presented it as a possible

Universal Algebra [137], the Grassmann-Clifford geometric system was left relatively unex-

plored outside the realm of spinor mathematics until David Hestenes found Marcel Riesz’s

series of lectures delivered in the late 1950’s entitled Clifford Numbers and Spinors [120].

In reading Reisz, Hestenes discovered that Clifford’s spin algebras included transformations

that were isomorphic to matrices common in quantum mechanics (namely, the Pauli and

Dirac matrices), and used them to develop a geometric algebra of spacetime. In 1966, with

the publication of his now classic text on Space-Time Algebra [65], Hestenes awakened in-

terest in the hypercomplex Clifford Algebras by exploring their inherently geometric nature,

their utility in describing a range of classical and quantum mechanical phenomena, and their

unifying integration of various algebras. Continued treatment developed the system into a full

calculus in Hestenes and Sobcyk’s text Clifford Algebra to Geometric Calculus [75], which

was further elaborated into a mechanism for differential geometry in [72, 68, 69, 125].
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In 1991, citing previous representations by Lounesto, Ahlfors, Anglès and others, Hestenes

published an article [67] clarifying the use of geometric algebra in producing projective and

conformal geometric spaces. In 2001, along with Hongbo Li and Alan Rockwood, Hestenes

elaborated this work, based on a model developed by a student of Gauss, in order to propose a

fully homogenous algebraic model of Euclidean space [70, 74, 95]. These texts demonstrate

that adding a Minkowskian metric tensor to a Euclidean subspace enables one to work alge-

braically with flat and round elements such as lines, circles, planes, and sphere, as well as

encoding all conformal (angle-preserving) transformations of these subspaces as orthogonal

transformations in the higher dimension – essentially through compositions of reflections in

hyperplanes. Their system encapsulates the geometric properties of a Euclidean space and

the covariant morphisms of its subspaces exceptionally well. Thus was born conformal geo-

metric algebra: an expressive mathematical syntax for describing spatial relationships which

we explore in Section 2.4.

With this truly Leibnizian mechanism for articulating machines in place, researchers as-

sumed the challenge of working out the full expressivity of the conformal system. Timothy

Havel explored molecular modelling with distance geometry [132, 63]. Leo Dorst published

texts on its use in rigid body mechanics and wrote a comprehensive textbook with Stephen

Mann and Daniel Fontijne on its use in computer science [45]. Eduardo Bayro-Corrochano,

a cyberneticist and roboticist, extracted the use of the motor algebra in generating kinematic

chains, and used the primitives to construct contraint and control systems for machine learn-

ing and computer vision [9, 10, 7]. Richard Wareham, Jonathan Cameron, and Joan Lasenby

developed a plethora of useful geometric computing techniques from computer vision to com-

puter graphics [134]. Christian Perwass developed engineering applications along with Clu-

Viz, a popular visualization engine of the conformal model [111, 112]. In 2004, Anthony

Lasenby outlined uses of the conformal model in conical transformations and alternative

geometries[90]. Anthony Lasenby, Chris Doran, and Stephen Gull delved deep into physics
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applications, including a new gauge theory of gravity [62, 89, 39]. 14

Within the community of computer graphics practitioners of GA, the conformal model of

3D space is currently the most widely used due to its superior representation of Euclidean

transformations and primitives, as well as its universal capacity to represent non-Euclidean

geometries. Because objects in the algebra transform covariantly, Leo Dorst and his co-

authors have repeatedly emphasized the value in using geometric algebra’s primitives as

building blocks (“You should learn to take advantage of these new possibilities of CGA,

by daring to define your shapes as more than simply a mesh of points.” [44]p36).

The most common applications of geometric algebra in computer graphics include mod-

elling transformations [40], forward and inverse kinematics for robotics[10, 9, 4, 3], image

processing for computer vision [7, 134], raytracing and camera navigation for scene render-

ing [45, 92], and mesh deformation [13] and point cloud analysis for geometry processing

[41, 76, 123]. Such research demonstrates to great effect the advantages of the mathematics

when used as an analysis layer over existing shapes and scenarios.

Examples of raw synthesis include the loxodromic Möbius transformations pictured by

Dorst, Mann and Fontijne in [45] and the conformal orbits and knots of Dorst and Valkenburg

in [46]. Doran has explored the use of linear circle and sphere blending to create curves

and surfaces [38]. Krasauskas and Zube develop bezier-like forms and surface patches [87,

86]. Bell has examined surface generation through interpolation of circles on his website

[12]. The current author has experimented with deforming primitive surfaces in [28] and

[29]. Falcon-Morales and Bayro-Corrochano picture ruled surfaces in [49] and in Chapter

6 of [7]. Sommer, Rosenhahn, and Perwass have categorized the use of screw motions to

generate shapes in [127]. Wareham, Cameron, and Lasenby have suggested the interpolation

of motors as a potential way to express form in [134] and demonstrated making conics out

of the conformal model. Crystallographic space groups have been worked out algebraically
14All this geometric activity coincided with continued explorations of the analytic component of Clifford

Analysis, which extrapolates complex signal processing into the quaternionic domain and beyond. Such appli-
cations, while rich in their own right, are not investigated here.
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by Hestenes and Holt in [73, 71]. An implementation for examining the transformations

themselves was written by Hitzer and Perwass [79].

The results of the above works make it clear that the practice of digital synthesis with

geometric algebra is promising field of research that demands more investigation. All these

authors articulate the benefits and beauty of geometric algebra exceptionally well. Thanks to

the efforts of these researchers and others, we can now begin our practice.
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Chapter 2

Geometric Algebra

The tools of mathematics were invented, not discovered.

– David Hestenes

2.1 Summary

In this section we outline the mathematical construction of geometric algebra, beginning

with defining a basis over a vector space and ending with the 5D conformal mapping of

3D Euclidean geometry. The conformal model allows us to express Euclidean primitives and

transformations in a compact way. We will restrict ourselves to the key elements of geometric

algebra necessary to keep our treatment self-contained, and look at some algebraic proofs

just to get a flavor of the articulation. In the process, we will construct dual representations

of primitives such as points, planes, spheres, lines and circles, and explore how they can

combine. We will also generate transformations with which to transform those primitives,

such as rotations, translations, dilations, and boosts.

Our computer implementation of this system can be found in Appendix A and online at

github.com/wolftype/versor
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where, because we encode the generic nature of the algebra, our implementation is not limited

to the conformal model presented here. A more in-depth look at the algebra and proofs of

the constructions can be found in the references of Section 1.6. Other points of entry include

the excellent collection of articles discussing the conformal model of geometric algebra in

computer science [45, 40, 134, 92, 49, 76].

2.2 Beginnings

2.2.1 Orthogonal Transformations

An orthogonal transformation is a linear function f such that for any two vectors a and b

a ·b = f (a) · f (b) (2.1)

preserving the inner product and therefore preserving both distances and angles. In Euclidean

spaces these transformations are reflections and rotations and combinations thereof. An or-

thogonal group is the set of all such transformations acting on a vector space, and in geo-

metric algebra this group is generated by vectors themselves. In fact all the transformations

detailed throughout this document are orthogonal, and all can be constructed through the lin-

ear geometric product of vectors. Such transformations are called versors. Versors do more

than preserve the inner product between elements on which they operate: they preserve the

outer product and are therefore structure-preserving. Our treatment of synthesis techniques

relies on this structure-preserving mechanism for combining and transforming geometric el-

ements under algebraic manipulation, as it allows for flexibility in the design process.1

Conformal geometric algebra is so called because its orthogonal group of transforma-
1The emphasis on building elements and operators through structure-preserving multiplication rather than

addition is what some authors use to distinguish the term “geometric algebra” from “Clifford algebra”. See [93]
for a more rigorous discussion of the difference.
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tions in n+ 2 dimensions is isomorphic to the conformal group of transformations in n di-

mensions. The conformal group includes all transformations that preserve angles – distances

need not be preserved. In Euclidean spaces of dimension 3 and above this group is equivalent

to the Möbius transformations: reflections in spheres. Essentially, the conformal geometry of

3D Euclidean space is encoded by the structure-preserving versors of a 5D vector space.

We begin by considering Euclidean spaces.

2.2.2 Canonical Basis

An n-dimensional vector space V n is spanned by n linearly independent elements {en} which

can be defined over a ground field of real numbers R in which case it is a real vector space.

Endowing a real vector space with a real-valued metric hv,vi= |v|2 for v 2 V n defines a Eu-

clidean space Rn. These vector elements are closed under addition and scalar multiplication.

Multiplication of the vector elements, however, adds additional algebraic structure to form an

associative geometric algebra G n with 2n linear subspace elements.

The added multiplicative structure emerges from a single axiom which defines a metric-

preserving quadratic product such that v2
= hv,vi= |v|2 for any vector v. This axiom induces

the algebra in the following way: consider v = ae1+be2 in G 2, with a,b 2R and a positive

metric on its linear elements hei,eii= 1 for i = 1,2. The metric product is then

hv,vi= a2
+b 2 (2.2)

and the quadratic product is

v2
= (ae1 +be2)

2
= a2e1e1 +b 2e2e2 +ab (e1e2 + e2e1). (2.3)

For equations 2.2 and 2.3 to be equal requires that

e2
i = hei,eii= 1, (2.4)
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which we assumed, and that for i 6= j

eie j =�e jei, (2.5)

thus inducing an anti-symmetric non-commutative property. We will find it useful to write

eie j = ei j (2.6)

and note that such a primary unit element is also a member of the basis of the algebra, where

the number of subscripts specifies the grade, or dimension, of the element. This building-up

of higher grades from lower ones is the cornerstone of extension algebras, and the wedge

symbol, ^, specifies such an exterior or outer product.

ei^ e j =

8
>><

>>:

ei j if i 6= j

0 if i = j
(2.7)

The geometric meaning of this algebraic operator is expressed in Figures 2.1, 2.2, and 2.3,

where the outer product is associated with increasing dimensions or spanning a subspace.

The inner product is associated with decreasing dimensions or contracting a subspace.

and can be written as

ei · e j = mid i
j (2.8)

where d is the kronecker-delta function:

d i
j =

8
>><

>>:

0 if i 6= j

1 if i = j
(2.9)

and where mi is defined by the metric tensor of the embedding. While the metric is positive

for all bases in Euclidean vector spaces Rn, it can also be negative or zero, and this is noted
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grade blades geometry interpretation
0 1 scalar magnitude
1 e1,e2,e3 vector directed magnitude
2 e12,e13,e23 bivector directed area
3 e123 trivector directed volume

Table 2.1: Basis blades of G 3

by the full {p,q,r} signature of the field Rp,q,r, with p bases squaring to 1, q squaring to -1,

and r squaring to 0. 2

For Euclidean spaces Rn all mi are equal to 1 and we can write

ei · e j = d i
j. (2.10)

2.2.3 Basis Blades

We call primary unit elements basis blades and say the n elements {ei|i = 1,2...n} which

span the space of V n have a dimension or grade of 1, whereas elements such as e12 have a

grade of 2. In general an n-dimensional space admits elements of grades [0,n], where the 0-

graded element is a 0-dimensional scalar value and the n-graded element is an n-dimensional

pseudoscalar.

In an n-dimensional vector space there are
�n

k
�

basis blades of grade k, where
�n

k
�
=

n!
(n�k)!k!

is the binomial coefficient. For instance, in G 3 there is 1 blade of grade 0, 3 blades of grade

1, 3 blades of grade 2, and 1 of grade 3 (see Figure 2.1).

Altogether, the 2n elements comprise the complete set of basis blades of G n. Vectors

defined as linear sums of ei are considered 1-blades and are written in lowercase letters,

as in a = a1e1 + a2e2 + a3e3. 2-blades can be created by wedging together two 1-blades –

indeed, this is the definition of a 2-blade. In general, a k-blade is an element that can be
2The metric can be arbitrary, though we assume the {ei} to be linearly independent and orthogonal. For

instance Space Time Algebra uses R1,3, and Conformal Geometric Algebra uses R4,1. Grassmann, who first
developed the formal geometric system, used no metric and was primarily interested in extension and not con-
traction. This is equivalent to setting ei · e j = 0 for all i = j.
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expressed (factorized) as the outer product of k 1-blades. It is important to note – especially

when dealing with the logarithms of section 2.4.5 – that in dimensions higher than 3 sums

of basis blades can result in forms which, while composed entirely of k-basis blades, are

not themselves a k-blade precisely because they are not factorable as the outer product of

k 1-blades. The categories of such general forms are typically called bivectors, trivectors,

or quadvectors, etc. Thus 2-blades, 3-blades, and 4-blades are a subcategory of these more

general types.

Figure 2.1: Basis 1-blades e1,e2, and e3 in G 3 represent directed magni-
tudes (e.g. x, y and z). Linear combinations of these basis blades define
a vector: v = ae1 +be2 + ge3.

Figure 2.2: Basis 2-blades e12,e13, and e23 in G 3 represent directed unit
areas. Linear combinations of these basis blades define a bivector: B =

ae12 +be13 + ge23.

Figure 2.3: The basis trivector e123 in G 3 is also known as the pseu-
doscalar I. As the highest grade, blade I is sometimes referred to as the
volume element or tangent space. Multiplying elements by I�1 (i.e. di-
viding out the pseudoscalar) returns their dual represention. In G 3 the
bivectors and vectors are dual to each other: BI�1

= v. Typically one
writes B?

= v. See also Section 2.2.5.

2.2.4 Geometric Product

Let us now apply our above definitions to two different vectors a = {aiei} and b = {biei} in

G 3:
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ab = (a1e1 +a2e2 +a3e3)⇤ (b1e1 +b2e2 +b3e3)

= a1(b1e1e1+b2e1e2+b3e1e3)+a2(b1e2e1+b2e2e2+b3e2e3)+a3(b1e3e1+b2e3e2+b3e3e3)

= a1(b1 +b2e12 +b3e13)+a2(�b1e12 +b2 +b3e23)+a3(�b1e13�b2e23 +b3)

= (a1b1 +a2b2 +a3b3)+(a1b2�a2b1)e12 +(a1b3�a3b1)e13 +(a2b3�a3b2)e23

which reveals that our product encapsulates both the typical inner (“dot”) and outer (“cross”)

products of vectors. We call this associative quadratic operation, with both commutative and

anti-commutative components, the geometric product. For vectors a, b, and c:

(ab)c = a(bc) (2.11)

a^b =�b^a (2.12)

and we note that it is decomposable into an inner and outer product:

ab = a ·b+a^b (2.13)

The result of this expression has mixed grade – a scalar value of grade-0 and a bivector value

of grade-2. It is because of the possibility of mixed grade elements that general elements of

the algebra are called multivectors.

Traditionally, the dot product of two vectors has been known to represent the cosine of

the angle between them, while the norm of the cross product is the sine of that angle. This

relationship is preserved in the geometric product

ab = a ·b+a^b = cosq +Bsinq (2.14)

where B = a^b/ka^bk is the normalized, unit-area spanned by a and b, and where q is the
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angle between them. This equivalence between the geometric product and the trigonometric

functions is critical in formulating a general theory of continuous transformations from the

identity, relating the geometric product to the exponential via Euler’s formula. This feature is

investigated in Section 2.3.5.

With these basis elements and within our additional structure we can extend our n bases

to build a combinatoric group of 2n bases with a variety of grades ranging from [0,n].

Subscript Manipulations

The rules for combining elements are therefore threefold:

1. Concatenate subscripts (e.g. e1 ⇤ e2 = e12)

2. Negate shuffled subscripts (e.g. e21 =�e12)

3. Reduce doubled subscript to a scalar value3 (e.g. e11 = e33 = 1)

Thus in G 3 we can write:

e12 ⇤ e123 = e12123 =�e223 =�e3

More generally, the eii of rule 3 above would be replaced by the tensor metric value mi

(most often 0, 1, or �1).

The concatenation (rule #1) stems from the fact that basis elements can be “wedged”

together with the outer product to build higher graded elements. Thus in G 3 where we have

three 1-dimensional blades b = {e1,e2,e3}, we can also define e1 ^ e2 = e12 where e12 is

a basis blade of grade-2. e13 and e23 are similarly defined and together form a basis B =

{e12,e13,e23} of bivectors. The wedge constructions continue, with e1 ^ e2 ^ e3 = e123 the

grade-3 trivector blade.
3Or, if not a real scalar value, then we reduce to whatever the ground field is, as one can define the algebra

over a field of other kinds of numbers as long as they form a commutative ring.
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ei^ e j =

8
>><

>>:

ei j i 6= j

0 i = j
(2.15)

2.2.5 Duality

Since there is only one n-blade in any n-dimensional space, we call it the pseudoscalar and

denote it as I.

I =
n̂

i=1
ei (2.16)

The pseudoscalar I has the useful property of dualizing any blade that is multiplied by it:

turning a blade of grade k into a blade of grade n�k with an equal number of basis elements.

This is written in shorthand as a star operator for any multivector member A of the algebra:

A?

= AI�1 (2.17)

where the inverse is defined by normalizing the reverse:

A�1
= Ã/(AÃ) (2.18)

and the reverse is found by reversing the order of subscripts:

ge123 = e321 =�e312 = e132 =�e123. (2.19)

An undualization is achieved by not inverting the pseudoscalar:

A�? = AI (2.20)

which is useful when seeking the multivector to which A acts as dual so that (A�?)? = A (as,

for instance, in Equation 2.25 below).
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The reverse is used to define the (reverse) norm, defined for a multivector X as:

kXk=

8
>><

>>:

p
X · X̃ if X2 � 0

�
p
�X · X̃ if X2

< 0
(2.21)

A few other unary operations are useful: conjugation and involution. In general for a

blade X of grade k

Reversion:X 7! X̃ = (�1)k(k�1)X (2.22)

Involution: X 7! X̂ = (�1)kX (2.23)

Conjugation: X 7! X̄ = (�1)k(k+1)X (2.24)

2.2.6 The Meet

An essential component of calculations in geometric algebra is that of the meet of two blades,

which is defined algebraically as the undualized outer product of duals. For bivector elements

A and B we can find their coincident axis v by:

v = (A?^B?

)

�? (2.25)

This simple formulation will be particularly useful once our blades represent more interesting

geometric primitives (such as spheres).
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A

?

B

?

(A

? ^B

?

)

�?

Figure 2.4: Meet of two Blades A and B determined by undualizing the outer product of duals:
(A?^B?

)

�?

2.3 Transformations

We now investigate the geometric product as a spatial operation. The existence of a geometric

product allows us to define an inverse unitary operator on vectors, which in turn enables the

notion of ratios of vectors. These relationships provide a unified treatment of continuous

transformations (as well as the assembling of the apparatus of differential geometry with

geometric calculus).

2.3.1 Versors

The definition of the inverse in Equation 2.18 works for any versor. A versor is any multi-

vector A that can be expressed as an outer product of n vectors, which we call an n-blade,

or any geometric product of such n-blades. Not only are versors invertible, but due to

the associativity of the geometric product, their left inverse and right inverse are the same:

AA�1
= A�1A = 1. Also for A’s composed of the product of even number of unit 1-blades,

the inverse is the reverse: A�1
= Ã, a fact which helps optimize computer implementations of

the transformations of this section.
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2.3.2 Reflection

Given two vectors a and b we can decompose a into a sum of vectors projected onto (parallel

to) and rejected from (orthogonal to) b.

a = ak+a? (2.26)

The geometric product of b with a can then be distributed accordingly:

ba = b(ak+a?)

= b ·ak+b^ak+b ·a?+b^a?

= b ·ak+b^a?

= ak ·b�a?^b

= (ak �a?)b

which holds because both b^ ak and b · a? are 0 by definition. If we multiply both sides by

b�1, forming a “sandwich” on the left we get

bab�1
= (ak �a?)bb�1

= ak �a?

and negating this gives

�bab�1
=�ak+a? (2.27)

which, as depicted in Figure 2.5, encodes a reflection of a over the bivector plane that b is

normal to. Typically we use a b of unit length, such that b�1
= b and equation simplifies

to �bab. We note that this powerful spatial syntax that uses algebraic mechanisms to relate
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b

�bab

�1

a?

�ak ak

a

b

?

bab

�1

�a?

Figure 2.5: Algebraic anatomy of a reflection of a over the bivector b? dual to b.

geometric elements stems from our ability to invert a blade.

This ability to model a geometric transformation without any reference to coordinates or

dimension gives breath to our algebra. We will soon see that all transformations are built this

way, using variants of the fundamental sandwich operation. The “sandwich” product�bab�1

is referred more formally as the versor product.

A further generalization of this reflection operation involves calculating the involution of

the element being reflected in order to determine whether a negative is necessary. To reflect a

multivector A by a versor X :

A 7! A
0
= XÂX�1 (2.28)

2.3.3 Projection and Rejection

We were able to use algebraic mechanisms to create a reflection operation in a vector space

by acknowledging the decomposition of one vector in terms of another. In particular we use

it to define a vector a’s projection onto and rejection from another blade B.

Projection: (a ·B)B�1 (2.29)
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Rejection: (a^B)B�1 (2.30)

If a is a vector and B a Euclidean bivector, the projection of a onto B is a vector in the

plane of B and the rejection is a vector orthogonal to it. If both blades are vectors, denoted

a and b, the projection operation then is a scaling of b while the rejection is a scaling and

rotation of b by 90 degrees in the a^b plane.

2.3.4 Rotations

If we take the reflection-generating versor product �bab and apply another reflection opera-

tion to it of the form �c(�bab)c = cbabc then this composite reflection generates a rotation

in the common plane of b and c through twice the angle from b to c.

Because the product cb can be used to generate a rotation, this composition of unit length

vectors is type of versor called a rotor in the geometric algebra literature4, and is usually

denoted R. As demonstrated in Figure 2.6, a rotor R = cb generates a rotation in the direction

of b to c in their common plane and twice their angle. It is applied to some vector a as a

versor product:

a 7! RaR̃ (2.31)

where R̃ is the reverse bc and RR̃ = 1. We will often notate the transformation under this

versor product in brackets as a 7! R[a] = RaR̃ when convenient.

2.3.5 The Remarkable Exponential

As noted, we say orthogonal transformations like reflections and rotations are versors, and we

call the invertible elements used to create them generators. Here geometric algebra reveals
4The term rotor dates back to Clifford’s original treatment of geometric algebra, who coined it as a conjunc-

tion of “rotation vector”.

32



�bab

�1
a

c

?

c

✓

2✓

cbabc

b

Figure 2.6: A rotation is composed two reflections. Vector a is reflected by b and the result
then reflected by c to create �(c(�bab�1

)c�1
). The signs cancel, and the expression can be

further reduced to cbabc if b and c are unit length. The nature of this double reflection is
such that the angle between a and cbabc is exactly twice the angle between b and c. Note that
order matters: bcacb would generate a rotation in the opposite direction.

its strong ties to Lie algebras and Lie groups, which uses similar terms. As we will see, a

variety of transformations can be constructed, and it helps to categorize them by whether they

are composed from an even number or odd number of 1-blades. Throughout the literature,

even versors are called rotors or spinors, and they have the ability to be decomposed using an

extension of the “remarkable formula”5 of Euler:

eiq
= cosq + isinq (2.32)

where i2 = �1, q is any real number and e is Euler’s number (and is not to be confused

with our basis blades e1 etc). Euler’s formula greatly facilitates algebraic manipulations of

complex transforms. Recalling that our unit 2-blades (e12, e13, and e23 in G3) also square to

-1, we might hope that for a unit 2-blade B:

eBq
= cosq +Bsinq (2.33)

5Deemed so by Richard Feynman, Euler’s formula is eip
+1 = 0, which can be seen to emerge from equation

2.32.
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and this is indeed the case. In fact, what we have called the “imaginary” number i can be

simply recast as e12 in G 2, revealing that a complex number is a type of rotor or spinor, em-

bedded in the even subalgebra of 2 dimensional Euclidean geometric algebra.6 Quaternions,

rotation transformations, are another type of rotor or spinor embedded in the even subalgebra

of 3-dimensional geometric algebra: given a 2-blade B, equation 2.33 generates a rotation

around the axis normal to it. Because B is a directed area plane, we talk about rotations in

terms of the plane in which rotation occurs, rather than in terms of the axis. Of course in

G 3 these are dual notions however the plane-centric approach enables us to conceptualize

rotations in higher dimensions, such as in G 4,1.

When applied to an element in the sandwich form of equation 2.31, eBq generates a rota-

tion in the direction opposite the orientation of B through twice the angle of q

v 7! eBq ve�Bq
= RBvR̃B = RB[v] (2.34)

where to emphasize the plane of rotation we will sometimes write RB. Since in the above

equation the resulting rotation will be negative twice the value q , we often write:

v 7! e�
q
2 Bve

q
2 B (2.35)

to specify a rotation of v by q in the plane of B.

Furthermore, of relevance when we discuss the conformal model, any 2-blade in Eu-

clidean or Minkowski spaces can be exponentiated, and general bivectors can be split into

commuting 2-blades B+ and B�. Any continuous transformation is thereby encoded as a

rotation in some hyperplane of these spaces. An example of this decomposition is outlined in

Section 5.3.6, as detailed in [46], following a result of [75].

Trigonometry is strictly relegated to this notion of the exponential of a bivector. In the

GA literature, pages of classical trigonometric matrix deductions are replaced by these simple
6This geometric interpretation of i at least partially motivates the title of Gull, Lasenby, and Doran’s physics

paper Imaginary Numbers are not Real [62].
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encodings of spin transformations. This plays a particularly helpful role in the kinematics

equations of Chapter 4.

2.3.6 Rationalizing with Ratios

We can find the transformation Rab that takes unit vector a to b in their common plane,

following section 10.3.2 in [45]. The first thing to note in our geometric numerics is our

ability to invert a and therefore to divide it out of b – conceptually this is akin to finding the

transformation that takes the real number 2 to 10: we must divide 10/2 to get the result 5.

Consider solving the equation x5x = 10; in that case 10/5 gives us x2, and the solution is

x = ±
p

2 . The versor product applies the rotor twice, our division of vectors gives us twice

the transformation,

Squaring a transformation is akin to applying the transformation twice

R2
ab =

b
a
= ba (2.36)

with the last equality due to a�1
= a for a of unit length, and so

Rab =
p

ba. (2.37)

Finding the square root of this multivector turns out to be a matter of normalizing 1+ba,

whose norm is defined as
p

(1+ab)(1+ba) =
p

|2(1+ habi)|

Rab =
1+bap

|2(1+ habi)|
(2.38)

A “geometric motivation” for this definition of the square root as |1+R2| can be found

in [46], where it is shown that this equation works for more than just Euclidean quaternionic

rotors. The square root of any “simple” rotor exponential of a 2-blade can be found this way.

See for instance section 5.3.5. This has profound implications when implementing this in
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code, as Equation 2.38 can be used to generate a rotation in any dimension.

2.3.7 Example Problem: Preventing Camera Roll

Let us get a feel for the use of the algebra by applying it to a basic problem in graphics

computations. One common task is to orient a local xyz frame, such as a virtual camera at

location c, towards some point p in space. This is easy enough by using equation 2.38 to

find the rotation that takes the global z axis (0,0,1) to some unit target vector v, where v =

(p� c)/kp� ck. However this can induce unwanted roll in the resulting camera orientation

(see Figure 2.7). Our task is therefore to orient the camera towards our target while also

keeping the camera’s local y axis as vertical as possible. For more about frames please refer

to Section 4.2.

Algorithm 2.1 Preventing Camera Roll

1. Construct the rotation R1 that takes e3 vector to the (unit) target direction v (equation
2.38).

2. Construct the transformed plane xy0 by applying rotor R1 to e12. Also find the trans-
formed vector y0 by applying rotor R1 to e2 (equation 2.31).

3. Construct the target yp local “up” direction by projecting e2 onto transformed xy0 bivec-
tor (equation 2.29).

4. Construct the rotation R2 that takes y0 to yp (equation 2.38).

5. Compose the rotation sequence R = R2R1.

Step 3 of Algorithm 2.1 is the key here, as it takes an ideal “up” direction e2, and projects

it onto the transformed plane xy0 representing all possible “up” directions in which any rolling

might happen, returning an adjusted local yaxis that is as vertical as possible. We note that

in step 5, the rotation R1 followed by R2 is composed as R2R1. Transformations are applied

in the reverse order in which they are multiplied (consider Figure 2.6, where cb encodes a

reflection in b followed by a reflection in c).
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Figure 2.7: A frame is rotated to point its z (blue) axis towards a target, inducing an unwanted
roll about the z axis. Absolute y (e2) is projected onto its transformed x^ y plane. The frame
is then rotated again to keep its y (green) axis as vertical as possible.

2.3.8 Other Metrics

In addition to R3 and R4,1(which we explore next in Section 2.4), a few other metrics have

been deemed worthy of closer study.

R1,3 Much of the modern day interest in geometric algebra stems from a 1966 publica-

tion by David Hestenes called Space-Time Algebra [65], which explores spinors in the space

of four dimensions to derive a matrix-free approach to quantum theory. As specified by the

signature of that space, there is one time dimension which squares to 1 and three space dimen-

sions which square to -1. In addition to this classic text, readers are encouraged to take a look

at Gull, Lasenby and Doran [62] for a brief introduction to particle physics with geometric

algebra, as well as Doran and Lasenby’s textbook [39].

R3,3 Recent explorations into the encoding of projective transformations as versor products

have been made by the geometric algebra community, notably in [94] and [42].

R4,2 Lie Sphere Geometry, which we touch upon at the end of Chapter 6, has been proposed

as an even more unifying way to deal with 3D surfaces, for instance by Krasauskas in [86]

and Bobenko in a non-GA setting in [17].
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R2,4 Anthony Lasenby has explored a variety of metrics for cosmology, including this con-

formalized space-time metric [88, 90].

2.4 Conformal Geometric Algebra

Amongst the most commonly used metrics, R4,1 has garnered the most attention due to a

result discovered by Wachter in the 1800s and implemented by Hestenes with the language of

geometric algebra: the complete conformal group of transformations in Rn is encoded by the

orthogonal group of Rn+1,1. This means orthogonal transformations – versors – in this 5D

space preserve angles between 3D elements. The preservation of this property signifies a con-

formal transformation and in 3D these are sometimes referred to as Möbius transformations.

R4,1 is called the conformal model of R3, and the geometric algebra of this space is known as

conformal geometric algebra. For more details on this construction please see references in

the summary at the beginning of this chapter and in Section 1.6, especially [70, 74, 95].

2.4.1 Conformal Metric

The metric of a space determines the properties of the inner product. Consider a 2-dimensional

space where one of the basis blades squares to -1 instead of 1. This is known as a Minkowski

metric of signature R1,1, and the basis are often labelled e� and e
+

(or sometimes alterna-

tively as ē and e).

· e
+

e�
e
+

1 0
e� 0 -1

Table 2.2: Minkowski Metric of R1,1

One can then create a null basis by defining two new basis elements no and n• in terms

of e
+

and e� such that the new elements square to 0 (see Figure 2.9).
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n• = e�� e
+

no =
e�+ e

+

2
(2.39)

e
+

= no�
n•
2

e� = no +
n•
2

(2.40)

This is easily verified:

n2
• = (e�� e

+

)

2
=�1+1� e�e

+

� e
+

e� = 0

n2
o = (

1
2
(e�+ e

+

))

2
=�1

4
+

1
4
= 0

The weighting is such that their inner product is �1:

n• ·no = (e�� e
+

) · (1
2
(e�+ e

+

)) =�1
2
� 1

2
=�1

which holds regardless of the order.

When added to Euclidean metrics Rn to create Rn+1,1, these characteristics of the null

basis of R1,1 enable a rich set of features such as the ability to disambiguate between vectors

and points, represent distances of points with the inner product, and represent geometric

primitives with the outer product. The inner product table for R4,1
= R3�R1,1 is listed in

Table 2.4. This definition of R4,1 entails it being split into Euclidean and Minkowskian metric

components.
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· e1 e2 e3 e
+

e�
e1 1 0 0 0 0
e2 0 1 0 0 0
e3 0 0 1 0 0
e
+

0 0 0 1 0
e� 0 0 0 0 -1

Table 2.3: A nondegenerate basis for R4,1.

· no e1 e2 e3 n•
no 0 0 0 0 -1
e1 0 1 0 0 0
e2 0 0 1 0 0
e3 0 0 0 1 0
n• -1 0 0 0 0

Table 2.4: A degenerate null basis for R4,1.

2.4.2 Blades

The addition of two new basis blades generates other blades besides scalars, vectors, bivec-

tors, rotors and the pseudoscalar. For example, e1no, e2no, and e3no are now basis elements,

as are e1n•, e2n•, and e3n•, and indeed all combinations of the Euclidean subalgebra with its

new friends no and n•. Table 2.5 lists the complete set of 32 basis elements in the conformal

model of R4,1 (25
= 32 basis elements), and the geometric concepts which they encode.

Before we explore these geometric concepts, a few more algebraic details should be

pointed out. We write the basis element E = no ^ n• rather than non• since the geometric

product of these basis elements is of mixed grade:

non• = no ·n• +no^n• =�1+E (2.41)

Note as well that E = e
+

e� since
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E = no^n•

=

1
2
(e�+ e

+

)^ (e�� e
+

)

=

1
2
(�e�^ e

+

+ e
+

^ e�)

= e
+

e�. (2.42)

Whereas the Euclidean bivector basis ei j give a negative square, some of our new bivector

bases, such as ein• and eino square to 0, and E2
= 1:

E2
= (no^n•)

2

= (e
+

e�)2

= e
+

e�e
+

e�

= �e
+

e
+

e�e�

= 1. (2.43)

That a bivector B can square to a negative, positive, or null value leads to variations of the

expansion of eB from Equation 2.33. We will show in section 2.4.4 (namely, with Equation

2.62) how these variations lead to different types of rotors, by providing a more generalized

Euler formula that works in higher dimensions.

For the rest of this document, in order to distinguish between purely Euclidean variables

such as v = ae1 + be2 + ge3 and variables of the conformal space such as k = ae1no +

be2no + ge3no, we write the former in bold, as is the convention in many geometric algebra

texts.
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grade basis

0 1

1

Pointz }| {

no,

Euclidean Vectorz }| {
e1,e2,e3, n•| {z }
Dual Plane| {z }

Dual Sphere

2

Point Pairz }| {
Euclidean Bivectorz }| {

e12,e13,e23,

Direction Vectorz }| {
e1n•,e2n•,e3n•| {z }

Dual Line

,

Tangent Vector
z }| {
e1no,e2no,e3no, E = no^n•| {z }

Flat Point Origin

3

Circlez }| {
Euclidean Pseudoscalarz}|{

e123 ,

Tangent Bivector
z }| {
e12no,e13no,e23no,

Direction Bivectorz }| {
e12n•,e13n•,e23n•,e1E,e2E,e3E| {z }

Line

4

Sphere
z }| {
e12E,e13E,e23E,e123n•| {z }

Plane

,e123no

5 I = e123E

Table 2.5: Basis blades in Conformal G 4,1 and most of the geometric concepts they encode.
The motivation for the many of the names stem from their behavior under various versor
products. Not represented here is a Flat Point not at the origin, which is a blade of grade 2
whose basis is {e1n•,e2n•,e3n•,E}.
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2.4.3 Primitive Elements

The central motivation for this null-space construction is that it allows us to disambiguate be-

tween a point and a vector, and allows us to treat all orthogonal transformations in Euclidean

space as versor products – including translations. This is due to the compactification of Eu-

clidean space with an additional invariant basis n•. Additionally, we can now distinguish be-

tween flat subspaces and round subspaces of the algebra. Specifically, the conformal model

produces a menagerie of familiar geometric elements like lines, circles, planes and spheres in

the form of blades, and introduces lesser known species as well such as flat points, imaginary

circles, and tangent bivectors. Table 2.5 organizes these elements according to their grade,

and helps to illustrate why flat concepts, such as planes and lines, are always subsets of the

more general encodings of spheres and circles which contain more information. In the con-

formal model, flat elements (e.g. lines and planes) are just generalized round elements (e.g.

circles and spheres) that pass through infinity. Table 2.6 provides algebraic expressions for

most of the useful geometric entities and operators that can be constructed with the conformal

model. A useful list of binary operations of the elements can be found in the Appendix to

[27].

2.4.3.1 Points as Null Vectors

To begin the construction we map a vector x in Euclidean space to a point p in conformal

space using inverse stereographic projection (see Figure 2.8):

x 7!p = no +x+ 1
2

x2n• (2.44)

This function of the form f : R3!R4,1 completes our minimum definition of how to con-

struct the conformal geometric algebra. In this representation points are called null vectors

because they dot with themselves to return a zero measure: p · p = 0. Since the outer product

of any blade with itself is always zero, the null-ness of points is often expressed as
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p2
= 0 (2.45)

This can be demonstrated algebraically:

p2
= p · p = (no + x+

1
2

x2n•) · (no + x+
1
2

x2n•)

= n2
o +x2

+(

1
2

x2n•)
2
+

1
2

x2
(no ·n•)+

1
2

x2
(n• ·no)

= n2
o +x2

+(

1
2

x2n•)
2�x2

= x2�x2
= 0

which reveals a motivation for weighing7 the n• by 1
2x2: the new basis blades serve to cancel

out the square of the vector x in the Euclidean preimage.8 This quadratic mapping defines

a horosphere (or sometimes called horocycle in lower dimensions, or horoball in higher),

which is the paraboloid embedded in n+1 dimensions. The term comes from Lobachevsky,

who discovered this paraboloid has a natural Euclidean structure that can be used to represent

non-Euclidean geometries as well (see Figure 2.8).

These null points of equation 2.44 have the useful property of encoding distance ge-

ometry: their dot product is minus half their squared distance from each other. If d is the

Euclidean distance between points pa and pb then

pa · pb =�
1
2

d 2
. (2.46)

Finally, the outer product of points creates other primitives of Euclidean geometry. As

Hestenes notes in [70], the ability to make such constructions in Euclidean space eluded
7Points themselves can be weighted by changing the value of their no basis vector. Note that when no 6= 1,

p2 is no longer 0.
8Note that alternative mappings of x 7!p, and definitions of no and n• exist throughout the literature that still

satisfy the requirement that p2
= 0, n2

o = n2
• , and non• = n•no =�1.
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n1

1

x

c

p = x+ .5x

2
n1

Figure 2.8: The mapping of Euclidean Rn onto a paraboloid one dimension higher (called the
horocycle or horosphere) preserves the conformal structure of the Euclidean space. This can
be illustrated geometrically by observing that lines through both x and p intersect the sphere
Sn+1 at the same location c, with lines drawn to north and south poles respectively. The con-
formal mapping Rn 7! Sn+1, defined by extending a line from a point in Rn to the north pole of
Sn+1, is called inverse stereographic projection, and is a way of compactifying the Euclidean
space by adding a point representing infinity. By adding a basis in the infinity direction to our
space we can encode this inverse projection as the point p = x+ 1

2x2n•. Adding n0 to this
formulation provides a homogeneous representation of the Euclidean subspace.

e�

e+

n1 = e� � e+

n

o

= .5(e� + e+)

e�e+
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n1
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h

o
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o
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e

Figure 2.9: The null basis {no,n•} of R1,1 in terms of {e
+

,e�}. The horocycle of R2,1 is a
paraboloid mapping x 7! p = no +x+ 1

2x2n•.
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Grassmann (who did so only in projective space) because he had no null vector representation

of points.

2.4.3.2 Direct Representation

Round elements, or n-spheres, can be expressed directly as the outer product of points. A

point pair can be thought of as a 0-sphere – a sphere on a line with 0-dimensional boundary

– and can be created by wedging two points:

k = pa^ pb (2.47)

Similarly, a circle can be created by wedging together three points:

K = pa^ pb^ pc (2.48)

and sphere by wedging together four:

S = pa^ pb^ pc^ pd (2.49)

Flat elements can be constructed by wedging any of the above round elements with n•,

effectively generating a blade that spans infinity. This flat element is called the carrier of the

round element. Thus two points pa and pb, which define a point pair, can be wedged with n•

to form a line through them:

L = pa^ pb^n• (2.50)

and three points, which define a circle, can be wedged with n•to form a plane of the circle:

P = pa^ pb^ pc^n• (2.51)

while a sphere defined as four points wedges with n• to define the pseudoscalar of the space.
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A single point can also be wedged with infinity to form a flat point.

These direct representations of round and flat elements are sometimes called tangent

forms or outer-product-null-space (OPNS) representations. The latter terminology stems

from the fact that a direct element A can be defined as the set of points which do not increase

the span if wedged with it. That is A = {p|p^A = 0, p2
= 0}.

We next discuss the dual or normal form or inner-product-null-space (IPNS) represen-

tations A⇤, for which A⇤ = {p|p ·A⇤ = 0, p2
= 0}. The asterisk ⇤ signifies dualization with

respect to the pseudoscalar of grade-5 (whereas the star ? operator is reserved for dualization

of the Euclidean subalgebra).

2.4.3.3 Dual Representation

Given a point p mapped from Euclidean vector v according to equation 2.44, we can subtract

from the coefficient of the n• blade an amount proportional to a squared radius. In this way

our vectors are no longer null and can also represent spheres. A dual sphere s at point p

with radius r is constructed as

s = p� 1
2

r2n• (2.52)

thus we can consider points as dual spheres with zero radius. In general, the square of nor-

malized spheres returns their squared radius. This can be zero, in the case of points with no

radius, or positive, in the case of real spheres, or negative, in the case of imaginary spheres.

An imaginary sphere s at point p with radius r can be constructed by adding to the n• blade

rather than subtracting:

s = p+
1
2

r2n• (2.53)

A null point p lies on a real dual sphere s iff p ·s = 0. This is the dual definition of a sphere.

Note that by this definition imaginary spheres contain no points.
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Figure 2.10: The circle intersection of a sphere and a plane.

Subtracting two points pa and pb returns the dual plane bisecting them. Such a differ-

encing removes the n0 blade altogether, and we can write the formula for a dual plane p with

normal x at distance d from the origin as

p = x+dn• (2.54)

A dual line is the multivector sum of a Euclidean bivector B representing its orientation

and a support vector dn• indirectly encoding its distance from the origin:

l = B+dn• (2.55)

A closer analysis of the components of a dual line can be found in Chapter 5, where it is used

to generate a motor transformation.

Dual representations are very useful in practice for calculating incidence relationships.

Given two dually represented blades, their coincidence (or meet or intersection) is dually

represented by their outer product. For instance, a dual sphere and dual plane can be wedged

together to find their circle meet (Figure 2.10).

K = (s ^p)�⇤ (2.56)

The direct circle (real or imaginary) where the sphere and plane intersect is the undual-

ized outer product of duals. Similarly, two dual spheres can be wedged together to find the
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Figure 2.11: The meet (or coincidence) of two dual spheres K = (s1^s2)
�⇤is a real circle

with positive squared radius if the spheres intersect, an infinitesimal tangent circle with zero
radius if the spheres touch, or an imaginary circle with negative squared radius in the case
of no intersection. A third sphere can be introduced and wedged with the coincident circle,
resulting in a point pair.

p

b

p

a

(p

a

^ p

b

)

�⇤

Figure 2.12: The antipodal point pair k = pa ^ pb is dual to an imaginary circle equator:
K⇤ = k .

circle where they meet. We can recognize three distinct types of circles by examining the

intersection of spheres in Figure 2.11. We see that circles, like spheres, can also be thought

of as real or imaginary, depending on whether they have positive or negative squared radius.

At zero radius, circles are considered tangent bivectors.

The attentive reader may have noticed that since dual spheres contain the same basis ele-

ments as points, the outer product of dual spheres is a type of point pair. Since the dual of the

outer product of dual spheres is the circle where they meet, then there is a special relationship

between point pairs and circles. Indeed, this is the case: a point pair is a dual representation

of a circle. The duality of point pairs and circles proves quite useful in subsequent construc-

tions. Wedging two points together creates a 2-blade point pair, which can be thought of

as representing two antipodal points on a sphere. Undualizing the point pair, we extract the

equatorial imaginary circle of that sphere (see Figure 2.12).

Such geometrically significant relationships led Dorst (in [45]) to give the dual of the meet
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a special name: the plunge. Wedging two dual representations of elements together returns

an element that plunges orthogonally into both of them. We will use this property in Section

6.3.8 to find the circle orthogonal to two spheres through some point p.

Given a point pair k = p�^ p
+

, a useful formula from Chapter 14 of [45] refactorizes the

blade back into two null vectors:

p⌥ =

k ±
p
|k2|

�n• ·k (2.57)

This is useful in extracting information from geometrically defined constraints, as we will see

in the next section. For instance, point pairs result when intersecting a line with a sphere. The

meet of a line L = pa^ pb^n• through a sphere s is calculated as the dual circle:

k = (L⇤ ^s)

⇤ (2.58)

which is a point pair of the form p� ^ p
+

with the same orientation as the line. The first

point along the oriented line that intersects s is then k�
p

|k2|
�n•·k . Note that in Equation 2.58 we

dualize, rather than undualize, the outer product. This is motivated by a desire for consistency

with orientation and justified by the treatment of point pairs as the dual version of circles.

Another very useful expression from Dorst et al [45] is the construction of a round element

from a sphere s and a Euclidean subspace vector or bivector A,

s ^ (s · (�Ân•)) (2.59)

which gives the direct (outer product null-space) imaginary round element component of s

in the An• direction, as shown in Figure 2.13.

Reflections in round elements, or inversions, are possible using rounds as versors in Equa-

tion 2.28. In fact, finding the center point of a round element can be accomplished by reflect-

ing infinity in it and normalizing the result. An often cheaper way to find the center of a round
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p1

�

p2

v

B

�

Figure 2.13: Extracting antipodal point pairs and equatorial circles from spheres using equa-
tion 2.59. If v is a Euclidean vector and B a Euclidean bivector, then s ^ (s · (vn•)) gives
the imaginary point pair p1^ p2 in the v direction, while s ^ (s · (�Bn•)) gives the imagi-
nary circle in the plane of B. To create real rounds, we can replace s = p� 1

2d 2n• with the
imaginary s 0 = p+ 1

2d 2n•.

is to get the dual sphere surrounding it:

s = k/(�n• ·k) (2.60)

and then to extract the e1,e2,e3 component vector v by rejecting c from E (using Equation

2.30, or, if using a computer, just selecting the first three coefficients). v can then be mapped

to a null vector p 7! no +v+ 1
2v2n•.

Factoring rounds into their carrier and surrounding sphere is often useful for calculating

incidence relationships. Given a direct round k we can specify its carrier line or plane by

wedging with infinity, as in equations 2.50 and 2.51. This carrier can then be divided out to

find the dual sphere surround as:

s = k/(k ^n•) (2.61)

2.4.4 Transformations

A central benefit of the conformal model is its successful representation of transformation

as a geometric concept. This is primarily demonstrated in its respect of geometry as a study of

invariance under transformation, and extended by its use of geometric primitives to generate

transformations themselves. As opposed to matrix representation of transformations, from
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which there is no canonical way to extract its geometric content, the exponential representa-

tion of Section 2.3.5 provides clear access to the underlying geometry of a spinor operator

through the logarithm.

Recall the result of section 2.4.2, which describes how the conformal model admits bivec-

tors that square to -1, 0, and 1. Using the full range of these bivectors in the exponent eB

generates a variety of new rotors. These bivectors are called generators. We investigate the

results of using the general bivector point pair as an exponent in Chapters 5 and 6.

Equations 2.14 and 2.33 relate exponentiation of a Euclidean bivector B to the Euler

formula. For other 2-blades in the conformal model, the rules for exponentiation depend on

the sign of the square of the exponent:

R = e�
q
2 B

=

8
>>>>>><

>>>>>>:

cosh(q
2 )� sinh(q

2 )B if B2
> 0

cos(q
2 )� sin(q

2 )B if B2
< 0

1� q
2 B if B2

= 0

(2.62)

which is a result based on the Taylor expansion of exponential, hyperbolic, and trigonometric

functions. Thus if B = vn• = ae1n• +be2n• + ge3n• is a Euclidean vector v wedged with

the null-infinity blade, then its exponential is e�
v
2 n•

= 1� v
2n• (this particular example of a

rotor is a translator).

Given a unit non-null 2-blade B weighted with q , the scalar weight q can be extracted as

the norm kqBk from Equation 2.21 while B can be found via normalization as qB/kqBk.

In the 5D conformal model, all continuous Euclidean transformations are represented as

even multivector sums of grades 0,2, and 4. For instance, a rotation of amount q in the

Euclidean bivector plane B, can be constructed from a scalar plus a bivector: R = cosq
2 �

sinq
2 B. This construction is isomorphic to the quaternions, and can be applied to a vector v to

generate a rotated vector v
0
via the versor product:

52



v
0
= RvR�1 (2.63)

Other types of rotors (i.e. spinors) exist for all Euclidean transformations, and these are

applied in an identical manner as equation 2.63, greatly facilitating programming. For any

rotor R and any multivector X :

X 0 = RXR�1 (2.64)

The method of defining rotors through exponentiation of bivectors ensures that the inverse of

the resulting rotor is the same as its reverse. Thus equation 2.64 can be written in a manner

that is faster to implement:

X
0
= RXR̃ (2.65)

A description of the various types of rotors can be found in [40] and [46]. Here we list

the ones that can be directly built with equation 2.62:

• A rotation of q radians in the B plane around the origin: R = e�
q
2 B

= cosq
2 � sinq

2 B.

• A general rotation of q radians around the dual line l : M = e�
q
2 l

= cosq
2 � sinq

2 l .

• A translation by amount v: T = e�
v
2 n•

= 1� vn•/2.

• A dilation of amount c relative to the origin: D = e�
c
2 E

= cosh c
2 � sinh c

2E.

• A dilation of amount c relative to a point p: D = e�
c
2 p^n•

= cosh c
2 � sinh c

2 p^n•.

• A transversion relative to the origin: B = e�
c
2 vno

= 1� vno/2.

• A conformal transformation through the point pair k: C = e�
k
2
= ... (The expansion

depends on whether k2 is greater than, less than, or equal to 0. See Equation 2.62).
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a) b) c) d) e) f)

Figure 2.14: The simple continuous 3D conformal transformations representable as orthogo-
nal versors in R4,1 include a) rotations, b) translations, c) dilations, and d) conformal trans-
formations. e) Transformations can be combined, for instance a rotation around a line and
translation along it generates a screw motion. f) Projective transformations are not a type of
conformal transformation since angles are not preserved. (However, these can be represented
in the conformal model through a conic transform function [90, 134].) Versors can be used to
represent projective transformations in R3,3 [96, 42].

These last two will be more fully explored in Chapters 5 and 6. All of the above simple

rotors can be combined to form more complex articulations. For instance, a motor can be

made by composing a translation with a rotation to form a screw motion, M = T R, which

encodes any general rigid-body transformation. Such twisting motors can also be generated

directly by the dual line axis, though through a decomposition more involved than equation

2.62. These types of motions are explored in more detail in Chapters 4 and 5.

2.4.5 Interpolation

The general approach to interpolating transformations will be outlined here, and applied in

Chapter 5. If we want to find the transformation R that takes a k-blade A to another k-blade

B, we first calculate twice the transformation as the normalized ratio

R2
= (

B
A
)/kB

A
k. (2.66)
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From here we have two options: if we only want that transformation without inter-

polation, then we directly find the square root using the general method of R =

p
R2

=

(1+R2
)/k1+R2k. This requires dividing 1+R2 by its norm, defined for a Euclidean 3D

rotor in section 2.3.6 and Equation 2.38, and for general rotors in the conformal model in

Dorst and Valkenburg [46] and Section 5.3.6.

If, however, we are looking to interpolate the transformation R to create a continous trans-

formation from A to B, then rather than taking the square root we can just take half the log

of R2 to get a bivector which we can multiply by some t in the range of [0,1] and then

re-exponentiate to get an interpolated transformation rotor Rt . We consider R2 to be an ex-

ponential of some bivector l over twice the phase q in the form R2
= e�2ql , and therefore

since log(R2
) =�2ql we find

Rt = e- t
2 log(R2

) (2.67)

which is the approach used in continuous transformations of Chapter 5. It remains to investi-

gate the logarithm of a normalized ratio B
A .

2.4.5.1 Finding The Logarithm

Given a rotor R=eB, the general logarithm of a rotor finds its generator B, which is either a 2-

blade in which case the rotor is “simple” or a general bivector sum B=B
+

+B� of orthogonal

commuting 2-blades. Given the generator B, it can be linearly weighted (multiplied by a

scalar) and then exponentiated to return a different phase of the rotor R = efB.

From Dorst and Valkenburg’s text we find that if B is a 2-blade then the rotor R is “simple”

and can be written in the closed form of Equation 2.62.

The method for finding the logarithm is:

log(R) = atanh2(hRi2,hRi) (2.68)

55



where brackets hRik specify the k-grade basis elements of R (with hRi= hRi0) and where

atanh2(s,c) =

8
>>>>>><

>>>>>>:

asinh(
p

s2
)

p
s2 s if s2

> 0

s if s2
= 0

atan2(
p
�s2

,c)p
�s2 s if �1 s2

< 0.

(2.69)

A notable addition to this last case where�1 s2
< 0 is a modification that enables a rotation

in the opposite direction,

-(p-atan2(
p
�s2

,c))p
�s2

s (2.70)

which we will use in Chapter 6.

In cases where B is not a 2-blade but a general bivector (such as the dual lines with

modified pitch in section 5.2 or the ratio of two circles in Chapter 5), finding the logarithm

of R entails finding two orthogonal commuting 2-blades generators B
+

and B� (see [46]

for details). In this more general case the bivector is split into two as R = eB
= eB

+

+B�
=

eB
+eB�

= eB�eB
+ before applying equation 2.68 to each B� and B

+

separately.

2.4.5.2 Ratios of Rotors

Given two rotors R1 and R2, the relative rotor that takes the first to the second is R2R�1
1 ,

which can be thought of as applying the second to the inverse of the first. Of course this

bears a resemblance to the method of determining rotors that take blades to other blades from

equation 2.66.

2.5 Notation

We rely on the 2010 Amsterdam convention for notation of the conformal geometric algebra

of R4,1, with three Euclidean basis blades {ei}, homogenizing origin no = .5(e�+ e), and
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infinity n• = e�� e
+

., and null points p = no + x+ 1
2x2n•. Note that no and n• are some-

times identified as eo and e• or o and • or n̄ and n in other texts, and are possibly weighted

differently.

Brackets hXik around a multivector signify a variable that contains only the k-graded

elements of X . The absence of a subscript (as in hXi) signifies only the scalar component,

hXi0.

We use the generalized dot notation (A ·B) throughout instead of the contraction (AcB or

AbB) notation found in other texts. This means simply taking the lowest grade blade from the

product:

A ·B =

8
>><

>>:

hABigradeB�gradeA if gradeAgradeB

hABigradeA�gradeB otherwise
(2.71)

and noting that if either multivectors are scalar the result is 0.

Following the style of [45], lower case greek letters refer to the dual (inner-product null

space) representations of geometric elements, and upper case greek letters the direct (outer-

product null space) representations. Thus where possible in our algorithms we use s and S

for dual and direct spheres, l and L for dual and direct lines, p and P for dual and direct

planes, k for point pairs (dual circles) and null tangent vectors, and K for circles and null

tangent bivectors.

I is the 5-blade pseudoscalar of R4,1, with duality in the conformal space by multiplication

with I�1 is notated with a star, as in s = S⇤. Involution of an element S is indicated with the

hat symbol Ŝ. We specify rotors as R, rather than in calligraphic font R as we have done in

previous texts, and we notate their application to a generic element X via the versor product

mapping of X 7! R[X ] = RXR̃. Finally in some algorithms we write [X ]normalized to signify

dividing out the reverse norm (Equation 2.21) such that [X ]normalized = X/kXk.
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Figure 2.15: A degree-4 vertex with sector angles qi. If alternating angles sum to p (i.e. such
that q1+q3 = q2+q4 = p) the arrangement represents a flat-foldable and developable crease
pattern. Given such a crease pattern, our goal is to determine a legitimate (isometrically
constrained) position for p given some movement of q.

2.6 Example: Constructing Folds with Round Elements

Using the encoding of round elements and their intersections described in this chapter, we

can generate constructions in 3D space that are similar to the ruler and compass methods

of 2D (we could, in fact, do so in any dimension Rn by conformalizing it to Rn+1,1). To

demonstrate such constructions, we will model the motion of a simple rigid-foldable origami

pattern: isometric folds enabled by a system of creases in a plane. The design of such al-

gorithms is called computational origami, and has been developed beyond paper-folding as

a tool for architectural and material design [119, 118, 129, 130, 131, 85, 122, 61]. Here, to

emphasize the coordinate-free approach of geometric algebra, we introduce a simple method

for determining the folding motions around a vertex by intersecting spheres.

Given a degree-4 vertex (a vertex with 4 emanating edges) on a flat surface (i.e. a piece of

paper) whose alternating sector angles sum to p (see Figure 2.15), we would like to construct

a continuous isometric transformation of the vertices into a folded state, such that the edge

lengths are preserved at every stage.

We can begin our construction by noting that every edge around a vertex represents a fixed

distance, which we encode as a sphere. Determining the folding motion followed by a point

around an edge is tantamount to finding a circle of possible positions given two distances

from two points: that is, the intersection of two spheres. Figure 2.16 illustrates this concept
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a) b)

Figure 2.16: Constructing isometric folding configurations with sphere intersections. a) A
folding motion can be thought of as a circle. b) The circular motion computed as the inter-
section of two spheres, each representing a distance constraint centered at opposites ends of
an edge.

of using geometric primitives to construct constraint relationships and possible positions of a

mobile structure.

This process can be extended to add a third constraint: finding the intersection of three

spheres is tantamount to finding two possible positions (i.e. a point pair) a given distance

from three points. Figure 2.17 illustrates adding a third sphere in order to determine possible

positions of a point p. The result serves as a purely geometrical, coordinate-free, formulation

of what typically requires trigonometric compositions and careful coordinate manipulation.

It is a 3D version of the ruler and compass constructions of high school geometry. Noticeably,

there is no trigonometry involved when encoded with CGA.

We might wonder whether such simple constructions can extend to more complicated

crease patterns. Indeed, degree-4 vertices can be chained together to form larger quadrilat-

eral meshes which open and close with 1 degree-of-freedom, called Miura-Ori. Figure 2.18

illustrates a crease pattern upon which we can overlay a network of spheres, and Figure 2.19

some possible folded configurations of such a network.

This is a rather naive “brute-force” approach to finding the allowed configurations of a

constrained system, and requires careful sequencing of the meet operations. More work,

beyond the scope of this document, would be necessary to model the non-linear actions of

origami in general using spheres and circles and point pairs. Such exercises, however, push

us to see how far we can go without complex algebraic deductions – i.e. we let the geometry
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Figure 2.17: A point p (in red) computed as one of two possible intersections of three spheres.
As a point q is folded, its associated sphere constraint on p intersects the circle at varying
points, effectively calculating the movement of p.
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Figure 2.18: Left, a Miura-Ori crease pattern. Right, a construction network generated over
the pattern.

do the work – and serve to guide our kinematics work in Chapter 4.

For further reading, Tachi [130, 129] explores form-finding of a rigid-foldable quadri-

lateral origami structures – freeform generalizations of the patterns illustrated here – using

trigonometry and Jacobian matrices. These would be interesting to translate into the lan-

guage of GA.

2.7 Discussion

In this chapter we have presented the mechanics of geometric algebra and the conformal

model of G 4,1 necessary for a self-contained treatment. We introduced some of the geometric

primitives encoded by the model, as well as some of the transformations they induce through

exponentiation. The remainder of this thesis will be dedicated to taking a closer look at

generating structures from some of these transformations.

To get a taste of the kinds of reasoning basic G 3 enables, we considered the problem

of eliminating camera roll by projecting an “absolute” Y direction (represented as e2) onto

the bivector 2-blade of some preliminarily transformed frame of reference, in order to find

an as-vertical-as-possible orientation for our camera. To dive into construction techniques

facilitated by the conformal representation, we developed a trigonometry-free model of a
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Figure 2.19: Miura-Ori style folding motions generated by applying a series of outer products
of three spheres.
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flat-foldable crease pattern, and took a look at some of the folded states that can be figured

using this intersection-based approach.

These illustrations provide an introduction to the use of geometric primitives such as

vectors, bivectors, point pairs, circles and spheres for reasoning with and about space. It

reveals that once the spatial system is activated in a design environment, we can quickly

start to use it to model intricate articulations without consideration of individual coordinates.

With generic coordinate-free expressions such as projection: (a ·B)B�1 and the meet: (s1^

s2)
�⇤, we do not have to keep track of coordinates x, y, and z when figuring out a rotation

sequence or calculating the positions of a node in a folding pattern. In implementations (see

Appendix A), these types of expressions are written in a similar style: e.g. as (a<=B)/B

and (s1^s2).undual(), making it very easy to translate the mathematics written on the

page onto the screen.
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Symbol Geometric State Grade(s) Algebraic Form

Scalar 0 a

Vector 1 a = ae1 +be2 + ge3

Bivector 2-blade 2 B = a^b

Trivector 3-blade 3 I3 = a^b^ c

Point 1 p = no +a+ 1
2a2n•

Point Pair 2 k = pa^ pb

Circle 3 K = pa^ pb^ pc

Sphere 4 S = pa^ pb^ pc^ pd

Flat Point 2 F = p^n•

Line 3 L = pa^ pb^n•

Dual Line 2 l = B+dn•

Plane 4 P = pa^ pb^ pc^n•

Dual Plane 1 p = n+dn•

Minkowski Plane 2 E = no^n•

Direction Vector 2 tn•

Direction Bivector 3 Bn•

Direction Trivector 4 I3n•

Tangent Vector 2 not

Tangent Bivector 3 noB

Tangent Trivector 4 noI3

Rotor 0, 2 R = e�
q
2 B

= cosq
2 � sinq

2 B

Translator 0, 2 T = e�
d
2 n•

= 1� d
2 n•

Motor (Twist) 0, 2, 4 M = e�
q
2 l

= e�
q
2 (B+dn•)

= RT

Dilator 0, 2 D = e�
c
2 E

= cosh c
2 � sinh c

2E

Transversor (Boost) 0, 2 C = e�
q
2 k

= cosh(q
2 )� sinh(q

2 )k

Table 2.6: Basic elements of 3D conformal geometric algebra and their algebraic construc-
tions. Subspaces of the model serve as direct and dual representations of geometric entities
such as circles and lines and planes. Bold symbols represent Euclidean elements, with low-
ercase letters representing 1-blade vectors as is the custom. With e2

� = �1 and e2
+

= 1, then
no = (e�� e

+

)/2 and n• = e�+ e
+

represent the point at the origin and the point at infinity,
respectively. 64



Chapter 3

Symmetry: Constructing Space Groups

“The universe is asymmetric and I am persuaded that life, as it is known to us, is

a direct result of the asymmetry of the universe or of its indirect consequences.”

– Louis Pasteur

“The heart of mammals is an asymmetric screw.” – Hermann Weyl

3.1 Summary

As pointed out by Hitzer in [78], Hermann Grassmann viewed crystal structures as a particu-

larly appropriate application for his algebra of forms. Symmetry groups are well-represented

by versor multiplication, and the translation symmetries needed to describe space group tes-

sellations became encodable as versors with the advent of the conformal model. Illuminating

the expressive powers of the algebra, David Hestenes has shown the simplicity of an algebraic

representation of all 230 crystallographic space groups. In 2002, Hestenes published Point

Groups and Space Groups in Geometric Algebra [71], and again more fully in 2007, along

with Jeremy Holt, The Crystallographic Space Groups in Geometric Algebra in the Jour-

nal of Mathematical Physics [73]. These elegant papers demonstrated the ability to encode

the complex symmetries of 3D tessellations within the mechanism of conformal geometric
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algebra. Since then, Dechant has more fully systemized the versor representation of both

crystallographic and non-crystallographic groups [34], and applied it to the classification of

viruses. Applying the algebraic work to the visualization of symmetry groups, Hitzer and

Perwass created the Space Group Visualizer [SGV], a stand-alone software for exploring the

symmetries embedded within the 230 three-dimensional crystallographic space groups.

In order to leverage the results of Chapter 2, it will be helpful to establish how geometric

algebra can be used as a language of symmetry. Beyond visualizing symmetry itself, we

would like to develop techniques for its use as a synthetic engine, in order to provide a general

mechanism for creating structures based on these symmetries. In [98], Liu, Hel-Or, Kaplan,

and Van Gool point to four motivations for developing a computational representation of

symmetry: it is ubiquitous in real and virtual worlds, it is essential in perception and behavior,

it is compact when expressing form through transformation, and it is aestho-physiological in

developing design.1 In addition to its role in the morphology of life itself,2 symmetries are

what we use to build stable structures, to design deployable forms, to express fashion, and to

recognize forms.

To enable the construction of designs based on these symmetries, we detail how to gener-

ate these groups from scratch, and how to apply the resulting symmetries to any motif. Our

main contribution is the detailing of how to parameterize the generation of roots and trans-

formation operators in such a way that the resulting operations can not only be observed but

also applied to arbitrary shapes as a constructive design technique. While the existing texts
1In the cited text these reasons are actually used to argue for the need for computational symmetry analysis

techniques in advancing machine intelligence and computer vision. Using a computer to help in the classification
of symmetric systems could enhance computer vision techniques. The ability to synthesize symmetric models
will aid our ability to analyze real-world incarnations.

2The famed historian of the life sciences, Georges Canguilhem, writes in [21] that when Louis Pasteur
discovered bacteria, he was not looking for living organisms but looking at the geometric properties of crystals
(tartrate and paratartrate). Experimenting with their polarizing effects on light, he found mold was consuming
only the crystals of a certain handedness, thereby changing the polarity of the light that passed through. Life
itself was breaking the symmetry, selecting only left-handed molecules, leaving their enantiomorphs alone. One
of the characteristics of living material is this sensitivity to spatial orientation. Certain molecules can heal or
hurt us, depending only on their chirality. Hermann Weyl picks up this symmetry-breaking theme of life in
Symmetry [136], telling a similar story about Pasteur and citing lectures by F.M. Jaeger [81]. Canguilhem cites
François Dagognet [33] on this topic.
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explain the algebraic logic behind the formulations, here we more precisely detail the algo-

rithmic steps necessary to implement a construction based on crystallographic space groups.

We begin with the very fundamental step of finding three root versors given three angular

constraints.

We will explore each of the following in turn, but it will be useful to list the various

operative ingredients of the construction here:

1. Root versors specified by the angles between them. These are unit-length variables

a,b, and c.

2. Transformation generators composed of the root versors. These include reflections,

rotations and roto-reflections.

3. Transformations composed of all unique sequences of the generators.

4. Translational symmetry edge vectors which are generated from the root versors using

Table 3.4. To distinguish these vectors from the root versors, we write these as a, b,

and c.3

5. Lattice cells which are specified by the symmetry edge vectors.

6. Translators based on linear sums of the symmetry edge vectors.

7. Joining constraints that specify translators to be multiplied by generators in order to

create glides and screws.

In the end, our crystallographic space groups are composed of a finite set of transformations

which we can apply to any multivector input motif in order to generate a 3D pattern.
3This notation differs from the a, b, and c of [73] because these are different vectors. Hestenes and Holt use

a given lattice cell to define the “symmetry vectors” which are root versors of non-unit length. They then extract
cell edges as linear sums of these. This has the advantage of allowing them to demonstrate that the generators
can be written completely in terms of the symmetry vectors. However, we find it more constructive from an
implementation perspective to let the root versors be generated from angular constraint criteria. These versors
remain unit length and are then used to generate cell edges, which we call a, b, and c. Working directly with
cell edges greatly simplifies implementation of space groups, and has no negative impact on algebraic elegance.
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3.2 Point Groups

A point group is the complete set of transformations composed of all unique combina-

tions of reflection and rotation generators about some common center point. This point

remains invariant under the transformations. Using geometric algebra, such operators are

constructed by up to n number of root versors where n is the dimension of the space. These

versors, unit-length n-dimensional vectors which can act independently to generate reflec-

tions or which can act in composition to generate rotations and rotation-reflections (roto-

reflections). Given up to n root versors and a specification as to which act independently to

reflect and which in composition to rotate or roto-reflect, we can generate the a point group.

The set of transformations, and thus the point group, could be infinite, but here we are inter-

ested in finite point groups, related by a finite number of operations.

Various notations exist for describing point groups, and typically characterize either the

list of transformations themselves (International or Hermann-Mauguin) or else the generators

or versors of the transformations (Coxeter or Geometric), or else the overall symmetry of the

group they generate (Schönflies). We adopt the geometric convention of [73], which is similar

to Coxeter notation for specifying the angular relationship between the versors of the group.

In three dimensions, we consider three versors a,b, and c, whose directions are parameterized

by two numbers p and q which indicate the angles between a and b and between b and c,

respectively. a and c are always orthogonal. We use a bar, as in p̄, to specify when the versors

a and b are to be used not as independent reflection generators but rather in composition as

in ab, to form a rotation generator.

The overview of the methodology delineated in this section is as follows:

1. Specify root versors based on pq values.

2. Construct base generators based on bar notation.

3. Seed transformation sequence.
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4. Apply sequence to a motif.

3.2.1 Specifying root versors from angular constraints p and q

The 3D crystallographic space groups are so well-studied, that the very first step regarding

how to actually compute the root vectors given angular constraints p and q is typically omit-

ted in the literature: researchers can just look them up in a table, or else extract them from the

lattices in which they are known to fit. Because our current goal is to develop constructive

techniques, we would like to be able generate the roots from scratch, following a geometric

approach, saving the consideration of additional structure such as lattices only when neces-

sary later on.

As mentioned in equation 18 of [73] the relations governing the angular constraints p and

q represent rations of p . This is entailed by the condition that, for a, b, and c of unit length

(ab)p
= (bc)q

= (ca)2
=�1 (3.1)

which specifies p
p radians between a and b, p

q radians between b and c, and p
2 radians between

c and a. Because c and a are always orthogonal (p
2 radians apart) we can set a= e1, c= e2 and

then need only a procedure to find the unknown b. We do so by treating b as the intersection

of two bivector planes, each satisfying a particular angular constraint.

We find these planes via the cosine rule identity from spherical trigonometry, which re-

lates the p
p , p

q , and p
2 vector angles between a, b and c to the dihedral angles between planes

a^ b, b^ c, and a^ c (see Figure 3.1). For vector angles a , b , and g , and corresponding

dihedral bivector angles A, B and C, the cosine law for angles4 is

cosa = cosbcosg + sinb singcosA (3.2)
4In Appendix A of [66], Hestenes gives a full treatment of spherical trigonometry in terms of rotors, and a

derivation of the cosine law for angles.
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and

cosg = cosbcosa + sinb sinacosC. (3.3)

Since b is constrained to p
2 these equations reduce to

cosa = singcosA (3.4)

cosg = sinacosC (3.5)

and solving for A and C gives

A = acos(
cosa
sing

) (3.6)

C = acos(
cosg
sina

) (3.7)

Setting g =

p
p and a =

p
q we find the angle A to rotate the bivector plane a^c about the a axis

(i.e. the a�? plane) so that it contains b. Likewise, we find the angle C to rotate a^ c about

the c axis (i.e. the c�?plane) so that it too contains b. Intersecting these rotated planes to find

b involves undualizing the outer product of their duals:

b = (RC[a^ c]?^RA[a^ c]?)�? (3.8)

which is then normalized to unit length. Note that setting a = e1 and c = e3 requires assigning

a negative value to A to ensure we rotate a^c in the correct direction (namely, a? or�e23), so

that RA = e�(�
A
2 e23)

= e
A
2 e23 and RC = e�

C
2 e12 .
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Figure 3.1: The cosine rule from spherical trigonometry relates angles between vectors to
angles between the planes they span. Given three angles a , b and g we can find the three
angles A, B and C. In our construction, we can then define planes a^b and b^ c as rotations
of the a^ c plane about the a and c axes by angles A and C respectively. We construct the b
vector (in green) by intersecting these planes.

pq 22 32 42 62 33 43

a, b, c

Table 3.1: pq angular constraint symbols and their corresponding vector generators. a is
depicted in red, b in green and c in blue, a^b in yellow, a^ c in purple and b^ c in cyan.
The angle between a and b is p

p radians, and between b and c is p
q radians, while a and c are

always p
2 radians apart.
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3.2.2 Generating a complete set of transformations from the simple roots

a, b and c.

Given our three unit length roots a, b, and c, our next task is to find all the transformations

they generate. This will amount to inputing a random “seed” vector and building a list of all

the ways it can uniquely transform. With such a list, we can apply our transformations to

any input, or replace transformations with joining constraints when we develop space groups.

First, let us investigate how to encode the pq bar notation in an implementation.

We have three vectors a, b, and c which can be used as reflection operators, or pinors,

and three rotors ab, bc, and ac which can be used as rotation operators, or spinors. Finally,

we have a roto-reflection operation abc, which is a rotation by bc followed by a reflection in

a. Order matters; a different roto-reflection is encoded by bac. In practice, however, we will

only need to use abc to generate all unique space groups.

The bars over the pq notation (for instance, 4̄2) specifies which reflections, rotations,

and roto-reflections are active in a given system. Table 3.2, partially duplicated from [73],

explains the notation, as well as our own method for encoding this information in a computer

implementation as integers representing the type of transformation (reflection, rotation, or

roto-reflection), and the index into our lists of up to three transformations for each type

({a,b,c}, {ab,bc,ca}, or {abc,bac}).

Algorithm 3.1 demonstrates in pseudocode the following description: applying these gen-

erators to some input vector transforms it up to three ways. We call these transformed vector

our list of results. For each of these transformed vectors, we again apply the generators and

add any new results to our list. We repeat this process, applying our generators to our last

results and adding new results until no new results are generated. For each new result, we

note the {type, index} encoding used to generate it and, crucially, the index of the list

that was used as the input to generate the new result. Thus, to keep track of which result in

our list was used as an input to which transformation, we must add a third input parameter.
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This seeding procedure constructs a sequence of operation instructions which can be ap-

plied to any other input to generate a symmetry pattern. This is sufficient for an implementa-

tion and examples of the result of applying this to a motif can be seen in Figure 3.2. Some-

times, however, it is desired to have at one’s disposal the full set of transformation operations

without resorting to a sequential ordering. In such a case it is straightforward to examine the

sequence and construct from it the full set of absolute transformations: for every operation

in the sequence, if the input is n = 0, then the base generator specified by the type and

index is sufficient. Otherwise, we multiply the base generator by the nth operation in the

sequence. This is a recursive scheme that traces the operations back to the original input, con-

catenating operations in the process. For instance, for point group 22, the full set of unique

generated transformations is {1,a,b,c,ab,ac,bc,abc} where 1 is the identity. Point group

2̄2 generates only four transformations, {1,ab,c,cab = abc}, as does point group 2̄2̄, with

{1,ab,bc,abbc= ac}, while point group 22 generates just two, {1,abc}. Table 3.3 illustrates

the differences between these four crytallographic groups.

The geometric approach to generating these transformations avoids the use of matrices,

allowing us to work directly with the root versors. One advantage of this approach is that we

can use the same unit-length versors in the next step to create our symmetry edge vectors with

which we build a translation lattice. Another is that we can use the transformation operations

on any element of the algebra, not just other vectors.
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Symbol Generators Encoding = {{type, index},...}

p = 1 a {{0,0}}
p 6= 1 a,b {{0,0},{0,1}}

p̄ ab {{1,0}}
pq a,b, c {{0,0},{0,1},{0,2}}
p̄q ab,c {{1,0},{0,2}}
pq̄ a,bc {{0,0},{1,1}}
p̄q̄ ab,bc {{1,0},{1,1}}
pq abc {{2,0}}

Table 3.2: The first two columns pair pq bar notation with the generators they specify, and are
duplicated from [73]. We have added a third column detailing how one can encode the basic
generators in an implementation as a list of {type, index} instructions. The type integer
specifies reflections (0), rotations (1), or roto-reflections (2). The index specifies a, b or
c in the case of type=0, ab or bc in the case of type=1, and abc or bac in the case of
type=2.

Algorithm 3.1 Construct Transformation Sequence
procedure SEED

results {random input vector}
opseq {}
while new results have been found do

for x 2 results do
for g 2 generators do

tx g[x]
if tx is a new result then

results = results+ tx
opseq = opseq+{type(g), index(g), index(x)}

return opseq
end procedure

3.3 Space Groups

A space group is a set of transformations duplicated, or “hung” on every point on a lattice

cell. In practice, this is achieved by applying all transformations to a motif and then translat-

ing the result to all points on the lattice cell. The next steps in our construction are therefore

to:
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Geometric Int’l Front View Side View Top View

22 1̄
{abc}! {1,abc}

2̄2 2
m

{ab,c}! {1,ab,c,abc}

2̄2̄ 222
{ab,bc}! {1,ab,bc,ac}

22 mmm
{a,b,c}! {1,a,b,c,ab,ac,bc,abc}

Table 3.3: The four different crystal symmetries of p = q = 2, along with their primary
generators and the closed group of transformations they induce. The maximal symmetry, 22,
is the holohedral group of which the others are subgroups.
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Geometric Int’l p q

42 4
mmm 4 2

6̄2̄ 622 6̄ 2̄

3̄3̄ 23 3̄ 3̄

43̄ m3 4 3̄

33 4̄3m 3 3

43 m3m 4 3

Figure 3.2: Symmetries generated by applying a sequence of operations to an input motif.
Notation matches Table 2 of [73].
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1. Construct translational symmetry edge vectors based on root versors.

2. Construct lattice cells.

3. Add joining constraints that replace reflection and rotation generators with glides and

screws (respectively).

3.3.1 Constructing Bravais Lattice Cells from Root Versors

With our point group of versors and their particular generators defined, the next step in the

construction is to define the symmetry edge vectors to use for generating translational sym-

metries in a 3D lattice. While Hestenes and Holt define symmetry vectors a,b, and c so that

they are rescaled versions of unit-length root versors a, b, and c, in our construction we use

symmetry edge vectors a, b, and c so that they lie along the edges of the lattice cell. This

makes subsequent formulations on a computer less tedious (see Footnote 3). Table 3.4 spec-

ifies the relationship between the versors and the symmetry edge vectors, clarifying how to

construct vectors from versors, as well as which are free to rotate or scale. These relationships

define the primitive cells for each crystal system, where copies of the motif are “hung” on

each corner of the cell. Other non-primitive cells specify additional points on which to hang

a motif, for instance in the middle of it in the case of body cells, or in the middle of a face in

the case of face cells (we will only consider Primitive cells in this text). Certain cells admit

certain symmetries, and the combination of a point group with a lattice on which it is hung

defines a symmorphic space group.

3.3.2 Substituting generators with joining constraints for nonsymmor-

phic space groups

The final step in our construction is the multiplication of reflection and rotation generators

with translators based on linear sums of symmetry edge vectors. This results in two new
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System Cell Edge vectors
Triclinic {a = aa,b = bRa^b[b],c = gRa^c[c]}1̄, 22

Monoclinic {a = aa,b = bRa^b[b],c = gc}2̄, 1, 2̄2
Orthorhombic {a = aa,b = bb,c = gc}2̄2̄, 2, 22

Tetragonal {a = aa,b =�bab,c = gc}4̄, 4̄2, 4̄2, 4̄2̄, 4, 42̄, 42
Trigonal {a = aa,b = ab,c = gc}

3, 3̄, 62, 3̄2̄, 3, 62̄
Hexagonal {a = aa,b =�bab,c = gc}6̄, 3̄2, 6̄2, 6̄2̄, 6, 32, 62
Cubic (4,3) {a = aa,b =�bab,c = a(a^b)?}4̄3̄,43̄, 43
Cubic (3,3) {a = (a-c)/2,b = (a+c)/2,c = (2b�a� c)/2}3̄3̄, 33

Table 3.4: Primitive Lattice Cells and the symmetry edge vectors a, b, and c which define
them. The notation details how to define the symmetry edge vectors in terms of unit length
versors a, b, and c. For instance, the Orthorhombic cell symmetry edge vectors are just
linearly scaled version of the versors, where a , b , and g are scalar values. Triclinic cells
symmetry edge vectors b and c are free to rotate in the respective planes they form with a,
where Ra^b and Ra^c represent arbitrary rotations in those planes. In the cubic cell, (a^b)?
is the vector normal to the bivector a^b.
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Figure 3.3: Left, the holohedral group 22 hung on a primitive lattice. Middle, reflection over
a is converted into an axial-b glide. Right, reflection over a converted into an axial c-glide.

transformations: glide reflections (a translation followed by a reflection) and screw displace-

ments (a translation followed by a rotation).

3.3.2.1 Glide Reflections

Three kinds of glides are specified, axial glides along the symmetry edge vectors a, b, or c,

diagonal glides along the diagonal of the cell body or one of its faces (here we call these two

“diagonal-face” and “diagonal-body”), and diamond glides halfway along a diagonal.

Axial glides are along the edge of the lattice, they are only found in lattices for which the

edge is necessarily perpendicular to the reflection it is replacing. For instance, there are no

axial b-glides replacing the a generator in triclinic, monoclinic, trigonal or hexagonal lattices,

because the b edge is not perpendicular to the a versor in these systems.

The same absence is noted for diagonal glides with respect to the a generator. Addition-

ally, almost all diagonal glides replacing the a generator are diagonal-face glides – the one

notable exception is a single diagonal-body glide in the holohedral group 33 where a does

not lie along an edge vector but rather itself cuts diagonally across a face.

Similar restrictions apply to glides replacing the b generator, for which axial a-glides

and and diagonal-face glides only exist in orthorhombic systems, with diagonal-body glides

limited to cubic systems. Diagonal glides replacing the c generator are across the face for

orthorhombic and tetragonal systems, and across the body in cubic systems.
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a) b) c) d) e)

Figure 3.4: Space groups a) P4̄2 (int’l P4/m), b) P4̄12̄2̄ (int’l P4122), c) P4̄2̄ (int’l P42), d)
P4̄22 (int’l P42/m), and e) P4̄32̄2̄ (int’l P4322)

3.3.2.2 Screw Displacements

Whereas the above glide reflections replace reflection generators with translations followed

by reflections, screw displacements replace rotation generators with translations followed by

rotations. Like glides, the translation portion can be generated by linear combinations of the

symmetry vectors. These directions come in lengths that are rations of the rotation parameters

p and/or q.

Unlike glides, the translation component of screw displacements are always constructed

along the edge of the cell, with the added caveat that sometimes the resulting screw axis

is itself again translated along another edge. For instance, in space group P2̄12̄12̄1 (int’l

P212121), depicted in Figure , the screw axis of bcT 1/2
a has been translated along the b edge.

The resulting generator is T 1/4
b [bcT 1/2

a ].

For screw displacements replacing the ab rotation, the screw translation vector is usually

along the c edge of the cell. For instance F4132 (geom. F 4̄13̄2̄), the ab rotation is multiplied

by a translation along the c edge and the resulting screw transformation is shifted along the b

edge in the negative direction to create the generator T�1/4
b [abT 3/4

c ].
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s Int’l Geo Point Group Point Group (Top View)

0 P622 P6̄2̄

1 P6122 P6̄12̄

2 P6222 P6̄22̄

3 P6322 P6̄32̄

4 P6422 P6̄42̄

5 P6522 P6̄52̄

Table 3.5: Screw displacements of the form P6̄s2̄ with translation component T s/6
c generated

from s/6th of the c edge vector.
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a)

b) c) d)

Figure 3.5: Screw displacements for space group P2̄12̄12̄1 (int’l P212121). b) Front view, c)
side view, d) top view.

a) b) c)

d) e)

Figure 3.6: Space group P4̄33̄2̄ (int’l P4332). a) Top view of the 4̄3̄ point group whose ab
rotation generator has been replaced by a screw along the c edge vector. For each transfor-
mation of the motif, we draw the screw movement as a black arc. Before repeated translation
to other points on the lattice, certain symmetries are missing, notably wherever the circular
black screw lines end. b) - d) These missing symmetries begin to appear during translation of
the motif to other points on the lattice. e) Side view demonstrating that the c screw axis has
been translated in the negative b direction.
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3.4 Application: Balanced Structures

The generic covariant nature of geometric algebra ensures that we can use our space groups

to transform more than just points. In Chapter 5 we will discuss continuous transformations

generated by bivector elements of the algebra. These bivector elements can be used as a

motifs to be transformed by a symmetry group. The resulting set of bivector elements can

be used to warp some input mesh in a symmetric way. For instance, given a set of n point

pairs {ki} created by transforming an input point pair by a symmetry group, we can transform

some point p as p
0
=C[p] where

C = e�Ân
i=0 diki (3.9)

and di is the squared distance between p and ki point pair element of the set. That is, we

create a single transformation as a linear sum of bivectors. For more details on this linear

weighting scheme see also our previous work on the warping of surfaces using point pairs

in [28]. Figure 3.7 illustrates some of the shapes that can be synthesized in this fashion.

Potential applications of these types of structures include machine parts such as blades and

gears, where symmetry is often a defining parameter.

More generally, symmetry groups are a cornerstone in the study of stability in structural

systems. For instance, a relationship between symmetry and engineering can be found in

Buckminster Fuller’s Synergetics [55], where (amongst many other contributions) he elab-

orates the notion of tension-and-compression arrangement of struts and cables exhibiting

equilibrium of forces (the origin of this design technique is sometimes credited to Kenneth

Snelson). Fuller terms this type of structure a tensegrity, short for tension-integrity, and de-

scribes it as an “island of compression in a sea of tension.” We will not delve too deeply into

the organizing principles of such systems, except to note that they are often symmetric, and

so explore how one might apply the above symmetry constructions in an study of them. In

the design of structural systems, using these symmetry groups can facilitate the engineer’s
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53

43̄

3̄3̄

P6̄52̄12̄ (int’lP65212)

P4̄12̄12̄ (int’l P41212)

Figure 3.7: Balanced shapes generated by applying equation 3.9 to each point on the surface
of a sphere or cylinder. Each point is transformed by a rotor C, where C is generated by the
exponential of a linear sum of distance-weighted 2-blades {ki}, and where the 2-blade set is
itself generated by the action of a symmetry group.
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a) b) c)

Figure 3.8: The point group 3̄3̄ acting on a motif. In a) the motif is in general position
creating 12 distinct transformations, while in b) the motif is in special position, creating 6
unique elements in an icoshedral form. c) Further collapsing of the motif would result in
octohedral symmetry, revealing the motivation for considering b) an expanded version of c).

orchestration of tensile and compressive forces, and it appears feasible that each of the 230

different space groups can be used to design a tensegrity structure.

Particularly, in [117], Pugh explores some of the symmetry groups underpinning tenseg-

rity systems. To explore how synthesis with symmetry groups could be used to model these

systems, let us consider a well-known tensegrity system which Pugh calles the “expanded

octohedron”. We will model it using the point group 3̄3̄, in the Cubic system, variations of

which are shown in Figure 3.8. If we apply the symmetries of 3̄3̄ onto a bar we can generate

the struts and then consider the connection of one bar to another as a single cable which itself

can also be transformed. The result of this exercise is shown in Figure 3.9. Similarly, in

Figure 3.10, we use the Space Group P3̄2̄ to generate possible configurations of a tensegrity

truss.

One might suspect that every point group symmetry has some corresponding tensegrity

system it can help generate, and indeed all platonic and archimedean solids seem to admit

a deconstruction of this sort. It remains to be explored how the full range of space group

symmetries and their joining constraints might help in construction of these relations.

3.5 Discussion and Future Work

Following the specifications delineated by Hestenes and Holt in [73], we have detailed a

method for constructing the 3D crystallographic space groups “from scratch”. Our proposed

simple modification to their symmetry vector notation has helped to clarify the translation
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a)

b)

Figure 3.9: The “Expanded Octohedron” tensegrity figure (see Pugh [117]). The transfor-
mations of point group 3̄3̄ are applied to a generating tensegrity strut (thick line) in special
position to create 6 total struts. Two different connecting cables (one blue and one purple)
between resulting struts are then also transformed by the same group for a total of 24 cables.
b) Manipulation of the orientation of the generating strut creates potential variations of the
figure. These require further analysis to measure any resulting instabilities.

Figure 3.10: Potential tensegrities using P3̄2̄. Left, a point group model. Right, a space group
tower model.
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vectors in terms of the cell edges. We demonstrated the calculation of root vectors using the

cosine angle law of spherical trigonometry, and developed a strategy for seeding the resulting

symmetry generators in order to construct an operation sequence that could be easily adjusted

with joining constraints such a glides and screws. We have made explicit through visualiza-

tions the spatial relationships entailed by these symmetries. We have enabled the construction

of a system that can take any number of points as a motif and transform it according to the

rules of the group. This formalism has granted us a quick way to generate 230 unique spatial

configurations: an internationally standardized dictionary of arrangements.

The covariance of geometric algebra allows us to transform any motif, and we have ex-

plored one advantage of this in Section 3.4, where we generated groups of point pairs which

could then be applied to some input mesh. The resulting deformations can be used to model

surfaces that would otherwise be difficult to rationalize, some of potential use in machine

design such as fan blades or gears. More details on the use of point pairs as generators of

transformations can be found in Chapter 5.

Using symmetry groups to model some basic tensegrity systems has opened a way to

generative exploration of other arrangements of tension and compressive forces. We study

only the geometry here, and not the dynamics, so an important next step will be to try to

add simulation of forces into our computer models and fabricate some of the models we

synthesize to study them in real (physical) space. Additionally, we have only begun to explore

the use of the point group and space group symmetries to generate these systems, and have

not considered the full range of possibilities of all the space groups. These should be studied

further for their contribution to the construction of tensegrity space structures.

Both non-Euclidean as well as higher dimensional reflection groups can be explored by

extending these methods. In [34] Pierre Dechant has demonstrated how any 3D reflection

group in G 3, better known as a root system, induces a root system in 4D through the geo-

metric product of its roots in what he calls a “spinor construction”. Dechant shows that even

all exceptional root systems in 4D – which have no analogue in other dimensions – can be
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induced in this way, including the mysterious exceptional E8 group.
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Chapter 4

Kinematics: Constructing Linkage

Mechanisms

It is in the nature of man that he makes music. It is in the nature of man that

he makes machinery too.

– Jack Phillips, Freedom in Machinery

Machines are nothing but certain figures, so I can describe them with these

characters, and I can explain the change of situation that can occur in them, that

is, their movement.

– Leibniz

4.1 Summary

In the previous chapter on crystallographic space groups, the last joining constraints we con-

sidered – screw displacements – were constructed by multiplying a rotation in a plane by

a translation partway along an edge or diagonal normal to the plane. In this chapter, we

will explore this type of screw transformation more carefully, through the use of motors

as multipliers for forward kinematics as outlined in [9]. We will introduce mathematical
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formulations for procedures solving two different inverse kinematics problems: in Section

4.4.1 we detail equations for an iterative solution to a rotationally constrained chain of rev-

olute joints based on the FABRIK (Forward-And-Backward-Reaching-Inverse-Kinematics)

approach outlined in [1, 4, 3], and in Section 4.4.2 we offer a closed-form solution to the

Bennett linkage mechanism, drawing upon the work of Bayro-Corrochano [6] in designing

geometric constraint-based systems of control, of which Hildenbrand [76] has a good de-

scription. We then generate some structures that can be designed from neworked linkage

mechanisms as suggested by You and Chen in [138].

In Section 2.6 we introduced the modelling of constrained movement via the geometric

intersections of rounds, building on the reader’s intuition of compass and ruler constructions.

Since rigid (isometric) structural constraints are distance-based, they can be represented as

spheres, and possible solutions can be encoded by their intersections. Here we further expli-

cate how relationships between points, circles, spheres, lines and planes that are constructed

with the closed-form implicit equations of geometric algebra can be used to model structures

that move. This provides a system for articulating forms using geometric primitives as con-

straint parameters, greatly facilitating intuitive design of kinematic structures such as are used

in mechanical linkages and robotics.

William Clifford’s interest in motion led to his study of biquaternions, now called dual

quaternions, which can generate twisting motions. These are isomorphic to Plücker coordi-

nates. Since Hestenes’ treatment on classical mechanics [66], the use of Clifford algebras for

rigid body motion analysis was explored by Bayro-Corrochano and Lasenby in [11], and ex-

plorations of kinematics using Euclidean GA can be found in Lasenby et al in [91], and with

McRobie in [101]. The kinematic design of robot manipulators with primitives was addressed

by Bayro-Corrochano and Kähler in 2000 [9], where, outlining previous methods, the authors

develop the motor algebra for forward kinematics, and a method of using flat geometric

primitives (lines and planes) as constraints in the solution of inverse kinematic equations. In

subsequent formulations [8, 6] Bayro-Corrochano extended the motor-based theory into the
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Figure 4.1: An orthonormal frame at point p.

conformal algebra in order to include round geometric primitives as constraints which could

be intersected, and to incorporate computer vision analysis into the technique. The result is a

unifying approach to perception-action systems, often applied to humanoid locamotion. For

instance, Aristidou and Lasenby use their FABRIK constraint-based solver to model a hand

and a human body, and Rosenhahn and Klette use CGA to analyze poses of a human model

in [121].

4.2 Space Frames

In 3D graphics and CAD software, the combination of position and orientation is sometimes

called a pose. Here, to help ground our work in the physics from which it came, we call such

a point in space with orthonormal axes a frame (as in a frame of reference).1

Frames are parameterized by a position and orientation in the following way. With CGA,

we use a Euclidean rotor R= e�
1
2 qB to encode 3D orientation relative to R= 1 and a null point

p to encode position. The Euclidean vector component v of p (where p = no + v+ 1
2v2n•)

can be used to construct a translator (Section 2.4.4) of the form T = e�
1
2 vn•

= 1� 1
2vn•.

We can concatenate this description into a single multivector motor, which is a rotation fol-

lowed by a translation, M = e�
1
2 vn•e�

1
2 qB

= T R, which is like the “screw displacement” we

generated in the previous chapter except that now the translation direction v is not necessarily

perpendicular to the plane of rotation B. When generating screw displacements in the previ-
1The local axes of frames need not be orthonormal, though throughout this text we consider them to be.
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ous chapter, we translated first and then rotated (in the form RT ), but in fact the order was

irrelevant because we were translating in a direction orthogonal to the plane of rotation and

therefore B and v commuted. In Chapter 5 we will investigate how any motor M = T R can be

re-composed as the exponential of some dual line M = e�l , where the exponent represents

the dual line of motion, also known as a screw or a twist, around which and along which the

transformation occurs (see Figure 5.1 in Chapter 5 for an analysis of this representation of a

line).

In this current chapter we restrict ourselves to building motors by multiplying two simple

rotors, to encode a rotation followed by a translation: M = T R. When we refer to an frame’s

local y axis vector or x^y plane these are defined by applying the frame’s orientation rotor

R to the basis elements e2 and e12 (respectively), such that y = R[e2] and x^y = R[e12], with

R[X ] shorthand notation for the versor product RXR̃. In contrast to the Euclidean element

x^y which is bound to the origin, we refer to the frame’s homogeneous plane, translated in

world space as Pxy.

For a frame at the origin Mo, we say that kvk= 0 and R = 1. Applying M to any element

X as X
0 7!M[X ] translates and rotates X into the world space of the reference frame. Con-

versely, applying M�1 to any element X
0

as X 7!M�1
[X
0
] inverts the reference frame M and

returns an X in object space relative to the origin.

4.3 Kinematics

Rigid-body kinematics gains a full-featured friend in the conformal model. As we have

seen in Section 2.4.4, an essential subalgebra, called the motor algebra, emerges in which

translations and rotations are both multiplicative operators. We have explored the power of

this algebraic mechanism in articulating (expressing) the relations of crystallographic space

groups in Chapter 3, and now we will use it to relate the articulations (movements) of mech-

anisms. The subalgebra is isomorphic to dual-quaternions which have found favor within
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the robotic community, yet it enjoys the additional advantage of being able to operate on all

the geometric numbers described in section 2.4.3 and listed in Table 2.6.

A linkage is an open (one end position fixed) or closed (both end positions fixed) kine-

matic chain of frames or combination of linkages whose movement constitutes a mecha-

nism. Each link in a chain represents a relative transformation from one joint to the next,

and the joints are categorized according to their allowed motion. According to Chasles’ theo-

rem, all motions can be thought of as a rotation around and translation along some screw axis,

and joints are categorized into lower and higher pairs according to whether that screw axis

remains fixed in relation to the links it couples. The lower pairs, in which the axis is fixed,

can be revolute (R), cylindrical (C), helical (H), or prismatic (P).

Throughout this Chapter we will consider only revolute joints which rotate in their frame’s

x^y plane with one degree of freedom which we label q . In the case of open chains, such

as robot arm manipulators which do not form a loop, the individual joint rotations qi are

not constrained by the others (except to the extent that the result avoids self-collision). Such

manipulators are explored in Section 4.4.1. In the case of certain closed loops, such as the

Bennett mechanism of Section 4.4.2, joint rotations are not independent and the arrangement

is constrained or overconstrained.

In 1955 Denavit and Hartenberg [36] formalized the scalar parameters necessary to de-

scribe the configuration of a linkage mechanism based on matrix multiplication. In conformal

geometric algebra we use the same parameters, but encode them as motors rather than matri-

ces. Figure 4.2 illustrates the following parameterizations:

• ai: the skew angle between joint ji and joint ji+1

• ai: the link distance between joint ji and joint ji+1

• ri : the translational offset of joint ji along its own axis of rotation.2

2In many kinematics texts this offset is actually written Ri but we use lowercase to avoid confusion with our
rotor notation.
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These geometric parameters standardize the description of a k-chain and are fixed for

revolute-only mechanisms. Additionally, to configure the particular state of such a chain

we must also specify a free parameter:

• qi: the rotation of joint ji about its z axis of rotation.

In the motor representation, this final free parameter is encoded as a relative local “in-socket”

joint transformation about the e12 axis in object space as Rq = e�
1
2 qe12 whereas the first three

parameters above are encoded as a relative link between joints in object space. We encode

the link parameters as a single motor in object space in the following way:

• The skew parameter ai is encoded as a rotation around e13 as Rai = e�
1
2 aie13 .

• The link distance ai is encoded as a direction along e2 as dai = aie2n•.

• The translational offset ri is a translation along e3 axis as dri = rie3n•.

These encodings of ai, ai, and ri combine to form a single relative link motor in object space

MLi = Tdai+dri
Rai (4.1)

used to jump from Mi to Mi+1.

A frame in world space is computed by composing transformations in a method analogous

to matrix method. Given our four parameters, to calculate the absolute (world space) position

and orientation of the ith frame we calculate the motor transformation Mi that gets us there

relative to the origin:

Mi = Mi�1MLi�1MJi (4.2)

where MLi�1 , defined in equation 4.1, is the relative link transformation from the previous

frame and MJi is the local joint transformation Rqi at i. This forward kinematic composition

specifies that we first consider the local joint rotation, followed by the link from the previous
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Figure 4.2: Key parameters describing a chain of revolute joints. qi the angle of rotation of
joint ji is a free parameter, whereas ai the link length and ai the link skew between joints ji
and ji+1 is typically a fixed geometric property of the mechanism. The right image illustrates
a third fixed property ri which specifies the offset position of joint ji along its z axis of
rotation.

frame, and finally the previous frame’s absolute position and orientation in world space. As

in matrix transformations, and mathematical function composition ( f � g), the last transfor-

mation in the equation is the first one to be calculated (see Figure 4.3). Note that links and

joints are sufficiently encoded in object space using our basis elements, e2, e3, e12 and e13.

And that frames Mi are found through composition of these relative transformations.

To summarize:

• A joint MJ is an in-place transformation. In the case of revolute joints, this is encoded

in object space as a rotation by q in the e12 plane.

• A link ML is the relative transformation required from joint ji to the next joint ji+1.

This is encoded in object space as a skew rotation a about the e13 plane followed

by a translation d = ae2 + re3. Note that this transformation jumps from joint ji to

the location and orientation of ji+1 before the in-socket qi+1 transformation has been

applied.

• A frame M is the calculated, absolute, world space position and orientation relative

to the origin. In forward kinematics (Equation 4.2 and Figure 4.3) this is the result of
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Figure 4.3: Forward kinematics of a k-chain series of frames M. From left to right, calculation
of the absolute position and orientation of frame Mi requires calculating its local in-socket
transformation MJi , followed by its link displacement MLi�1 relative to the the previous frame,
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Figure 4.4: A robot arm can be modelled as a kinematic chain of frames.

compounding the transformations of all previous frames.

• A k-chain is a series of frames numbered {M0, ...,Mk�1}.

Thus, in a representation of a revolute chain, each frame Mi has a joint MJi specifying the

in-socket rotation and a link MLi specifying the transformation to the next frame.

4.4 Inverse Kinematics

A common problem in robotics and mechanism design and modelling involves knowing both

a target position for the end effector – the last frame in the kinematic chain – and a base

position for the first frame, and then determining the joint angles for all frames to satisfy that

criteria. Solutions to this inverse kinematics question are typically either analytical, closed

form and exact, or else iterative and error-reducing. In this section we present examples for

both approaches, the first an iterative solution to an open chain consisting of an arbitrary num-

ber of revolute joints, and the second an analytical solution for determining the configuration

of a Bennett linkage closed 4-bar revolute skew mechanism.

In our geometric formulations, we will find it necessary to add the ability to extract ge-

ometry from the space frame we constructed in Section 4.2 as a position p and orientation R,

and combined motor representation M = T R. We will call s the sphere at p with radius equal

to the link length kda + drk (see Figure 4.6). This sphere represents the distance constraint
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of frame Mi on frame Mi+1. The plane of rotation P is the e12non• blade transformed by

the frame’s motor representation as P = M[e12non•]. Similarly, it is useful to cast the link

offset direction re3n• in the frame of reference as rM = R[re3n•]. This offset together with

the plane adds an additional constraint on the position of Mi+1, namely TrM [P]. Note that this

can just as easily be written as M[Tr[e12non•]] which in essence translates the e12non• plane

along the e3 offset before transforming it into the frame of reference. As shown in Figure 4.6,

the distance constraint s along with the dual of the plane constraint TrM [P]

⇤ can be wedged

together to determine a circle of possible positions for the Mi+1 frame. Algorithm 4.2 details

this construction, and Algorithm 4.1 expresses a method for constraining a point to lie on a

circle.

When calculating the circle of possible positions for the previous Mi�1 frame, care is

required when accounting for skew parameters a , in order to ensure constructions are built

in the correct frame of reference. Similarly, when calculating joint angles, it is necessary to

consider the contribution of the link offset and distance parameters r and a. With these details

in mind, Algorithms 4.3 and 4.4 offer methods for extracting the circle of possible positions

of the next or previous frame in a chain of revolute joints. These work for arbitrary skews

and offsets. It should be noted that the algorithm we provide for finding the orientation of the

previous frame takes into consideration its location.

Algorithm 4.1 Constrain a Point to a Circle
procedure CONSTRAINPOINTTOCIRCLE(Point p, Circle K)

P K^n• . Carrier plane of circle (Equation 2.51).
s  K/P . Surround sphere of circle (Equation 2.61).
p
0  (p ·P)/P . Projection of p onto carrier plane.

L s ^ p
0 ^n• . Line through center of surround and p

0
.

k  (L⇤ ^s)

⇤
. Point Pair meet of surround and line (Equation 2.58).

return k+
p

|k2|
�n•·k . Point on K closest to p (Equation 2.57).

end procedure
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Algorithm 4.2 Calculating Circle of Positions of Next (i+1)th Frame
procedure NEXTCIRCLE

p Position of ith Frame
v da +dr . Vector of link offset and length.
s  p� 1

2kvk
2n• . Sphere at p with radius equal to kvk

re ject (v^ e12)/e12 . Rejection of link vector from plane of rotation.
rotRe j Ri[re ject] . Rejection Rotated into Frame’s Coordinates.
P TrotRe j[Pxy] . Translation of Pxy plane along rejection.
return Ki+1 (s ^P⇤)�⇤ . Meet of Plane of Rotation and Distance Sphere.

end procedure

Algorithm 4.3 Calculating Rotation of Previous (i�1)th Frame
procedure PREVROTOR

v R�1
i [pi� pi�1] . Direction from previous frame (relative to previous frame).

link R�1
ai�1

[dai�1 +dri�1 ] . Link vector (relative to previous frame).
projv (v · e12)/e12 . Projection of v onto e12 blade.
projlink (link · e12)/e12 . Projection of link onto e12 blade.

Rrel 
r

[projv]normalized
[projlink]normalized

. Rotor taking link vector to direction vector

return RiRrelR
�1
ai�1

end procedure

Algorithm 4.4 Calculating Circle of Positions of Previous (i�1)th Frame
procedure PREVCIRCLE

v dai�1 +dri�1 . Vector of previous link offset and length.
s  p� 1

2kvk
2n• . Sphere at p with radius equal to kvk

reject (v^ e12)/e12 . Rejection of link vector from e12 blade.
R PrevRotor() . Previous rotation from Algorithm 4.3.
n R[e3] . z axis of rotation in previous Frame of reference.
p  Tpi�R[reject][n] . axis translated by position and link rejection.
return K (s ^p)�⇤ . Meet of Plane of Rotation and Distance Sphere.

end procedure
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Figure 4.5: Geometric content of a frame of reference includes the orthogonal planes, line
axes, circles of rotation, and surrounding sphere.

4.4.1 Iterative Construction of Revolute k-Chains

We will use the geometric construction of revolute constraints as the basis for implement-

ing a version of a conceptually simple iterative technique called Forward-And-Backward-

Reaching-Inverse-Kinematics [FABRIK]. FABRIK was proposed by Aristidou and Lasenby

in [1] as a method for motion capture – a way of representing a configuration of joint posi-

tions of a chain given some set of 3D positions. In a subsequent work they modelled a human

hand and a human skeleton. The approach has recently gathered attention in the robotics

community for its intuitive construction and flexibility in solving a range of problems, and

can be used to constrain the positions of an open or closed kinematic chain using coincidence

relationships of round elements such as circles and spheres. Here we will detail an iterative

solver for an open chain with an arbitrary number of revolute joints using this technique.

The basic principle behind the technique is to satisfy constraints by reaching forward toward

some target, and then re-solve them by reaching backwards to the root of the chain, and then
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Figure 4.6: Given the ith frame in chain of revolute joints, we can use its ai and ri link
parameters to construct geometric elements which encode the possible positions of the (i+
1)th frame. Here the rotation plane is P which can be translated along the offset r and then
intersected with the surrounding sphere s to create the circle of possible positions of the
(i+1)th frame. Note that in this figure the skew parameter, ai, is 0. See Algorithms 4.2,4.3,
and 4.4 for more details on how to extract this circle from link parameters.
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repeating the process until the end effector is within some error threshold of the target. Note

that there is no guarantee of convergence, though in practice its users report stable results.

Our algorithm is similar in concept to Algorithms 2 and 3 of [1], though whereas those de-

scriptions model bone-like chains, here we contribute specific CGA mathematical equations

for k-chains in terms of Denavit-Hartenberg parameters visualized in Figure 4.6.

Basic Forward and Backward Approach with Spherical k-chains Before we tackle this

problem, it will help to review the basic technique of the FABRIK method by assuming that

all joints in our chain are universal ball joints, and therefore are constrained only by spheres,

not planes. Algorithm 4.5 and Figure 4.7 detail this most basic method: we fix the last frame

position, pn, to the desired target and “reach forwards” to constrain the pi�1 position to lie

on the sphere of radius ai�1 at pi. We iterate to the root of the chain. Then, we fix the first

frame position p0 to the desired base and “reach backwards” to constrain the pi+1 position

to lie on the sphere of radius ai at pi. We iterate towards the end effector. Note that the

terminology can seem counterintuitive: “reaching forwards” entails iterating backwards from

the end effector, while “reaching backwards” entails iterating forward from the base of the

chain.

We can define these spheres using the definition of a sphere at point pi with radius r from

Equation 2.52, and calculate the point on the sphere closest to pi+1 by creating a line through

pi and pi+1 and intersecting it with the sphere. We then use Equation 2.57 to extract the

point closest to pi+1 from the resulting point pair intersection: for a line L = pi^ pi+1^ n•

intersecting a sphere s centered at pi we can find this point by extracting the second point in

the resulting point pair intersection k from Equation 2.58, namely: k+
p

|k2|
�n•·k .

This particular distance constraint could easily be written with typical vector math, and

the mechanics of geometric algebra may seem redundant here. The real power lies in adding

additional constraints, such as only allowing the joints to rotate in a single plane.
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Backward iteration of Revolute k-Chains We have seen (Section 2.6) that a rotation in a

plane of fixed distance a can be encoded as a circle, and so we can use the circle as a geometric

constraint. Given a point pi+1 and a circle K at pi we can find the point on K closest to pi+1.

Aristidou and Lasenby provide a method that uses the midpoint of the reflection of pi+1 in

the carrier plane P of K, where P = K ^n•. In Algorithm 4.1 we simply use the projection

of pi+1 onto this carrier plane of K. Whichever method is used, that projected point, call it

ppro j
i+1 , can then be used to construct a line that is intersected with a sphere at pi with radius ai

as in the spherical approach.

We note that since in the case of inverse kinematics chains the circle K is derived from

its known center point q, orientation R, and radius r, an even more computationally efficient

option to constrain pi+1 is to project the Euclidean vector d between points pi+1 and pi onto

the Euclidean 2-blade x^yi = R[e12] of the frame at pi:

v = ((pi+1� pi) · (x^yi))/(x^yi).

We can then find a point pair by a construction using (normalized) Euclidean vector v and the

sphere s surrounding the circle of possible positions of pi+1:

k = s ^ (s · (vn•))

which is based on Equation 2.59 and illustrated in Figure 2.13. Extracting of the point closest

to p is then straightforward using Equation 2.57. In the case of links with an offset parameter,

this sphere s is not necessarily centered at pi.

Unlike the spherical case, where in-joint rotations can be determined after all positions

have been determined, at each step of the revolute algorithm we must also set the rotor ori-

entation Ri of each frame in addition to the position pi. When reaching backwards to satisfy

the base position constraint, the joint orientation is found by projecting the target direction

onto the plane of rotation. When reaching forwards we use Algorithm 4.3, which compares
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Figure 4.7: The forward reaching step of the FABRIK method for spherical joints constrains
frames at pi�1 to lie within the ai�1 radius of pi. Algorithm 4.5 details the process used to
calculate this geometrically as the intersection of the line through pi�1 and pi and the sphere
at pi with radius ai�1. Using this method, a chain of ball joints can be represented as a series
of forward-constraining-spheres centered at i going through i�1, and a series of backward-
constraining-spheres centered at i going through i+1.

the projection of the link vector and target vector, each transformed to be in the frame of

reference of the i�1th frame.

Because the calculations depend on the current orientation of each frame, it can be helpful

to slowly rotate the target end effector about its y axis in order to find a suitable solution,

thereby changing the z axis direction and relaxing the link constraint. This method facilitates

reaching a specified target position of the end effector (but not a target orientation).
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Figure 4.8: An implementation of the backward reaching step for chains composed of revolute
joints from Algorithm 4.6. Each pi+1 frame position is constrained to lie on the circle defined
by the Ri frame Pxy orientation. We project pi+1 onto the Pxy plane of the previous frame,
and then calculate the the line through that projected point and the pi position. We intersect
this line with the sphere at pi with radius ai.

Algorithm 4.5 Inverse kinematics of a chain of spherical joints
procedure SPHERICAL FABRIK(Base,Target)

while |pn · target|> error do . While end frame is too far from target
Point: pn Target . Place end frame at Target Position
for pi 2 Frames (Starting at pn) do . Forward Reaching Iteration Starting at pn

s  pi� 1
2a2

i�1n• . Possible positions of pi�1
l  pi^ pi�1^n• . Line through piand current pi�1
k  (l ⇤ ^s)

⇤
. Point Pair intersection of l and s

pi�1 
k+
p

|k2|
�n•·k . Point of k closest to current pi�1

p0 Base . Place first frame at Base Position
for pi 2 Frames (Starting at p0 ) do . Backward Reaching Iteration Starting at p0

s  pi� 1
2a2

i n• . Sphere at pi with radius ai
l  pi^ pi+1^n• . Line through pi and current pi+1
k  (l ⇤ ^s)

⇤
. Point Pair intersection of l and s

pi+1 
k+
p

|k2|
�n•·k . Point of k closest to current pi+1

Calculate Joint Rotations Based on Positions (Algorithm 4.8)
end procedure

4.4.2 Analytical Construction of the Bennett Linkage

Certain cases of closed chains, where the last frame is linked to the first, are overconstrained.

An overconstrained mechanism is one that “paradoxically” fails to pass the Grübler-Kutzbach

mobility equation, and yet still moves with at least one degree of freedom. For a spatial

mechanism the mobility equation is:
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Figure 4.9: An implementation of the forward reaching step for revolute joints from Algo-
rithm 4.6. a) Given a frame at pi in position Ri, the unit vector v is the difference between pi
and the projection of pi�1 onto the frame’s Pxy plane. v can also be more efficiently formu-
lated as the projection of of the vector d from pi�1 to pi onto the Euclidean x^ yi plane. b)
Frame is in position R�1

qi
Ri where Rqi is the rotation that takes v to yi c) Frame is in postion

R�1
qi

RiR�1
ai�1

. d) Frame has been placed at a position derived from the sphere s with radius
ai�1 and Euclidean vector v using Equation 2.59.

Algorithm 4.6 Inverse kinematics of a chain of revolute joints (See Figures 4.8 and 4.9)
procedure CIRCULAR FABRIK(Base,Target)

while |pn ·Target|> error do . While end frame is too far from target
pn Target . Place end frame at target
for pi 2 Frames (Starting at pn) do . Forward-reaching Step

Ri�1 PrevRotor() . Set rotation of previous Frame (Algorithm 4.3).
Ki�1 PrevCircle() . Circle of positions of previous Frame (Algorithm 4.4).
pi�1 ConstrainPointToCircle(pi�1,Ki�1) . Algorithm 4.1.

p0 Base . Place first frame at Base Position
Rt  1 . Set Rotation to identity
for pi 2 Frames (Starting at p0 ) do . Backward-reaching step

Ki+1 NextCircle() . Circle of positions of next Frame (Algorithm 4.2).
pi+1 ConstrainPointToCircle(pi+1,Ki+1) . Algorithm 4.1.
v pi+1� pi . Vector from pi to pi+1
v0  [(v · (x^yi))/(x^yi)]normalized . Vector projected onto frame’s x^y

plane.
v00  R�1

t [v0 ] . Vector relative to origin

Rqi  
q

v00
e2

. ith Joint rotation takes e2 to v00

Ri RtRqi . Final Rotation of ith Frame
Rt  RiRai . Preliminary Rotation of ith+1 Frame

end procedure
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Figure 4.10: Algorithm 4.6 applied to a revolute chain, with ai =
p
2 . The arrow fans represent

in-socket joint rotations, and the circles illustrate the possible positions of the subsequent
joints. On the right is an illegal configuration demonstrating the need for additional collision
testing.

Degrees of Freedom = 6(n�1)�
5

Â
i=1

(6� i)pi (4.3)

which gives the degrees of freedom of a mechanism with n links, where pi are the number of

joints with i degrees of freedom. In, [114] Phillips discusses the role overconstrained mech-

anisms have in engineering: primarily adding strength and stiffness (and yet requiring more

accurate construction). In [130], Tachi names two advantages of overconstrained quadrilat-

eral meshes (such as discussed in Section 2.6) – their ability to be actuated with a single

motor and their redundant – i.e. robust – construction. As explored by You and Chen in

[138, 22], overconstrained linkages can be networked together to make structures that deploy

with one degree-of-freedom – we experiment with the design of such mechanisms in the next

Section. Since such mechanisms can be modelled geometrically, we use geometric algebra to

help with a closed-form, analytical, construction. Here we explore the Bennett 4-bar linkage,

in Phillips’ words the “most famous and mysterious overconstrained yet mobile loop of them

all.”

Bennett proposed an overconstrained 4-bar skew mechanism in 1903 [14], a few years af-

ter Bricard introduced a variety of six-bar linkages. In 1931 Myard published a Contribution

à la géométrie des systèmes articulés, which included 5-bar overconstrained spatial mecha-

107



nisms. The kinematics of these overconstrained linkages have been greatly investigated but

they have been relatively underused in design. An examination of these and other linkages

can be found in Phillips [114], along with methods for designing more complicated mech-

anisms from the Bennett linkage mechanism. See also Baker, e.g. on Bricard linkages in

[5].

Our contribution here is to demonstrate how we can construct a model of one such mech-

anism using only our geometric intuition and what we have covered in this text thus far. In

particular, we greatly simplify the algorithm for specifying positions of a Bennett mechanism,

alleviating the burden of working out elaborate trigonometric equations and instead solving

constraint requirements through closed-form geometric constructions. Additionally, we avoid

the need to recalculate our formulation in the case of a change of geometric parameter such

as the offset r. We synthesize the mechanism using the motor algebra and intersections of

spheres and planes. We will first specify the parameters of the linkage: the relative transfor-

mations from joint to joint, then use those constraints to calculate the final absolute positions

of the frames, and only then calculate each joint’s local in-socket transformation.

The Bennett linkage is a 4-bar skew spatial mechanism connected by 4 revolute joints.

Plugging in n = 4 and i = 1 (revolute joints have one degree-of-freedom), the mobility equa-

tion for a Bennett linkage returns 6(4�1)�(5⇤4) =�2. Therefore in theory it cannot move,

however its geometric parameters actually allow it one degree of freedom. In relation to Fig-

ure 4.2, in a standard Bennett linkage there is no offset r, and the two main components to

parameterizing a Bennett linkage are the relative skew angles ai and link lengths ai. A single

equation serves to restrict the mechanism’s parameters:

sin(a2) =�sin(a1)⇤
a2

a1
(4.4)

and alternating link parameters are equal such that a3=a1, a4 = a2, a3 = a1, and a4 = a2.

This equation be understood to mean that consecutive links skew the plane of rotation in
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Figure 4.11: Spatial movement of a Bennett mechanism. In this case ai are all equal and
a2 =�a1. Revolute joints are depicted in blue.

Figure 4.12: With parameters ai and ai specified according to the single equation 4.4, the
constituting relations of a Bennett mechanism can be determined using the intersection of
two spheres and a plane. This is a novel, closed-form, geometric solution that avoids the need
to solve Denavit-Hartenberg closure equations with complex trigonometric relationships.

opposite directions by a factor porportional to the ratio of link lengths. In the case that ai = 0,

the mechanism becomes a planar mechanism. Note as well that in the case that a1 = a2 all

link lengths are equal and the equation simplifies to a2 = �a1. Figure 4.11 illustrates the

movement of such a mechanism.

Solving the configuration of a Bennett mechanism consists of determining, for a given

input angle state q1, all the other angles q2, q3, and q4 and the frame positions of that state.

Our deductive, geometric method is constructed in Algorithm 4.7 and illustrated in Figure

4.12. We first find the positions of all frames and then calculate the joint angles necessary to

achieve those positions.
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Algorithm 4.7 Closed-form solution to the Bennett Linkage
procedure BENNETT

1. Given a frame M1 at the origin with joint rotation q1 calculate a temporary position
and orientation of M2 as M2temp = MJ1ML1 . Note that we do not yet know the joint
angle at M2, but that we do know the position of M2 as well as the plane of rotation
in which q2 will act.

2. Calculate the position and orientation of M4 as M4 =M�1
L4

, that is, as the inverse of the
relative transformation of the final link. Note that while we have not yet calculated
the specific joint angle q4, we have determined the absolute (world space) position
and orientation of M4 which includes the joint angle.

3. With the positions of frame M2 and M4 thus determined, calculate the circle of possi-
ble positions for frame M3 as the intersection of the two spheres, one centered at M2
with a radius of a2 and the other centered at M4 with a radius of a3.

4. Intersect this circle with the plane of rotation of M2temp . This returns two points; pick
one. (Note one of the points may be the position of frame M1).

5. With all positions now specified, we can calculate the in-socket joint angles Rqi using
Algorithm 4.8.

end procedure

Algorithm 4.8 Calculation of Joint Angles based on Positions
procedure CALCJOINTS

Rt  1 . A Rotor set to Identity
for pi 2 Frames do

R Rt . Rotor at ith Frame
v (pi+1� pi)normalized . The unit target vector
proj (v·(x^yi))/(x^yi) . Projection onto frame’s x^y plane.
target R�1

t [proj] . The target vector relative to origin
Rqi  

q
target

e2
. In-Socket Joint rotation (equation 2.38)

Rt  RtRqiRai . Rotor of next Frame
end procedure
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4.5 Application: Deployable Structures

In the literature, the most common uses of CGA kinematic methods encompass the perception-

action cycle: image and motion capture and robotic articulation. We have described a method

for determining joint positions and rotations of a chain of revolute joints given some target

end effector position. Executing this model in real-time on a computer can be used to con-

trol the motions of a real-world robot manipulator such as a grasping arm, or conversely to

control movements of a virtual simulation by following motion captured points. A few other

potential applications present themselves as well:

• Computational origami. As suggested in Section 2.6, a crease pattern on paper can be

considered a network of revolute joints. By creating loops of revolute constraints it may

be possible to increase proficiency in modelling the movements of foldable surfaces,

perhaps by coupling the results with a relaxation step.

• Protein Folding. Kinematic models of proteins are sometimes used to try to find their

tertiary structures – possible low energy configurations of the molecules. These chains

of molecules are typically represented as chains of revolute joints (the backbone), with

additional revolute side chains. Representing these chains as a series of forward and

backward reaching circles may offer new computational advantages.

• Structural Engineering. Stadium roofs, arterial stents, satellite dishes, and mobile

habitats, are all examples of structures which are sometimes designed to transform

between two distinct configurations: compactly packaged folded state and an efficiently

opened operational unfolded state.

These categories of articulating spaces are sometimes called deployable structures. While

the term tends to refer to aerospace applications, where the need for transportable payloads

which can be opened automatically is prevalent, the same geometries of folding can be applied

to the design of expandable volumes at any scale. Deployable structures are also frequently
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found in nature, including twisting and untwisting DNA strands, unfurling moth tongues,

opening insect wings, and inflating lungs [20, 85]. Indeed, Miura’s pattern from Section 2.6

is said to have been inspired by the herringbone pattern of an unfolding hornbeam leaf [103].

Spatial mechanisms such as the Bennett mechanism, in which the axes of the revolute

joints are not parallel, are more complicated than planar mechanisms, in which the move-

ment is restricted to the plane.3 As You and Chen explain in Motion Structures, the vast

majority of linkage designs on this planet are planar mechanisms, meaning they do not artic-

ulate in 3D space; their paths of motion are restricted to a 2D plane. 3D articulations can then

be constructed by combining articulations in two directions, as in the case of the Hoberman

sphere. Similarly, Guest, in his 1994 PhD thesis on the deployment of cylinders and mem-

branes, explains that most space structures are 1 or 2 dimensional – either articulating beams

or struts, or else solar sails or arrays and antennae.4

In [22], Chen and You discuss the under-utilized 4-bar, 5-bar, and 6-bar spatial linkage

mechanisms, of which there are 15 (and growing), and propose their increased use in deploy-

able structure design. In particular, in their book Motion Structures, You and Chen investigate

the many forms that can be created using a network of Bennett linkages [138], some exam-

ples of which we will generate in this section. The Bennett mechanism can be linked to form

networks of motion, where the movement is itself the target of realization.

The use of closed loop linkages for the construction of deployable structures was first

investigated by Gan and Pellegrino in [56], though as they mention, they found previous

work in Crawford, R. F., Hedgepeth, J. M. and Preiswerk, P. R. (1973). In [109], Pellegrino

and Vincent consider the problem of packaging flat membranes.
3Configurations of planar linkages are investigated by Demaine in his dissertation [35].
4In aerospace, the complexity of designing 3 dimensional deployable forms is canonized by the challenge

of building parabolic reflectors. Satellite dishes must minimize their volumes in the folded state and maximize
their precision in the unfolded state. Guest credits Huso, Lanford, and Scheel with developing some early
contributions to the notion of wrapping a flat membrane around a central hub. In the Space Structures Laboratory
at the California Institute of Technology, Sergo Pellegrino has led research investigating various deployment
mechanisms for microgravity conditions.
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a) c)

b) d)

Figure 4.13: Linked Bennett mechanisms after You and Chen [138], which move with one
degree-of-freedom. a) Profile view. b) Top View. c) By shifting the connection point between
consecutive linkages, the configuration can be used to generate a circular truss. d) A twisted
truss.

Figure 4.14: Deployment sequence of a circular truss composed of linked Bennett mecha-
nisms.
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Figure 4.15: Transformation sequence of a linked Bennett mechanism, twisted in one direc-
tion, and circular in the other.

a)

b)

Figure 4.16: Deployment sequence of a proposed structure constructed with linked Bennett
mechanisms: circular in one direction and twisted in the other. a) Top and b) side view.

114



4.6 Discussion and Future Work

We have demonstrated how the motor algebra of the conformal model can be used in conjunc-

tion with the coincidence of round elements to construct complex articulations that typically

do not receive such unified treatment. By working within a homogeneous representation of

3D Euclidean space that admits and organizes all its isometric transformations, we were able

to avoid notational complications that emerge from compounding trigonometric functions.

It is apparent from these initial studies that the use of spheres to represent isometric con-

straints can be employed to find legitimate configuration spaces of overconstrained systems.

It remains to be shown whether these construction methods are more precise.

We have been able to apply the Denavit-Hartenberg parameters for linkage mechanisms

[36], while avoiding their matrix formulations, and detailed a strategy for encoding these

parameters in terms of motors based on the work of Bayro-Corrochano. Illustrating the ge-

ometric representation of constraints they elicit, we applied this representation to an imple-

mentation of the approach suggested by the FABRIK method of Aristidou and Lasenby, and

constructed a detailed algorithm for the inverse kinematics of a chain consisting of an arbi-

trary number of revolute joints (collision detection between joints was not addressed). This

also required specifying expressions for extracting the circle of revolution given a set of link

parameters. In contrast to this iterative approach, we then constructed a closed-form algo-

rithm for the modelling of Bennett linkages, and then, inspired by You and Chen [138], we

presented some forms that can be made by linking them together.

The potential applications of this work combine the motor algebra with the geometric

construction capabilities in order to fabricate objects. It would be interesting to see gear

systems and machinery in general designed with the constructivist approach applied here. A

good resource for finding more linkage problems to cast into GA terms is Phillips [114]. To

accomplish this, collision testing algorithms need to be developed to prevent self-crossing

during both forward and inverse kinematic solutions. To further the treatment of kinematics,
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investigations into the modelling of higher pair joints are necessary, where the motion screws

are not invariant with respect to the points of contact between links. For these contact-based

models, more details are required in order to fully express the geometric constraints at play

in terms of geometric algebra.
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Chapter 5

Transformations: Constructions through

Interpolation of the Bivector Exponential

Jo sóc geòmetra, que vol dir sintètic.1

-Antonio Gaudí

5.1 Summary

Here we more closely consider the synthesis techniques allowed by the representation of

transformations as the exponentiation of bivectors. Continuing from the previous chapter, we

begin with motors as exponentials of dual lines, and the interpolations that this representation

allows. We will demonstrate the use of dual lines to build trilinearly interpolated twist defor-

mation fields and then extend these methods into exponentiation of point pairs in preparation

for the final Chapter. Using point pairs as exponentials, we introduce the action of rotation

around a circle, for which the screws and twists serve as a special case. We show how this

can be formulated into toroidal knots following the work of Dorst and Valkenburg in [46],

and find a connection between that formulation and the Hopf fibration.
1I am a geometer, that is to say synthetic.
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In [135], Wareham and Lasenby propose the use of linear and quadratic interpolations of

bivector-valued rotor logarithms to blend frame positions, a subject also explored in [134],

where the method is applied to deformation of a mesh. Those papers also contain algorithms

to exponentialize dual line bivector “twists” into motors and conversely to find the logarithm.

Belón extends those results to create more versatile mesh deformations in [13]. Sommer,

Rosenhahn, and Perwass formulate “coupled twists” in [127] to synthesize forms. This is

taken up by Perwass more completely in [111]. In [46], Dorst and Valkenburg give a rigorous

treatment of the general bivector logarithm and reveal how it can be used to create conformal

orbits, including knots. In [29], we take up the task of using these rotors to generate surfaces,

a development we explore more fully in the next Chapter. Additional explorations into circle

blending can be found on Ian Bell’s website [12].

5.2 The Motor Algebra

Multiplying a Euclidean rotor by a translator returns an even-graded element with grades 0,

2 and 4. As we have discussed, even rotors in the conformal model can be represented as the

exponential of some bivector R = e�
q
2 B. In the case of motors, M = e�

l
2 , l is a dual line. In

Plücker coordinate systems, the moment is defined as the cross product between two points

on the line and is scaled by a factor proportional to the distance between them.

Figure 5.1 details the construction of a dual line twist generator, manipulating the pitch

of the screw by adding a portion of the line’s direction to its moment.

5.2.1 Exponentiating A Dual Line

Given a line l weighted by a period q , whose direction component is offset by a pitch f , how

do we formulate e�l ? A general closed-form exponentiation method for all bivectors in the

conformal model is provided by Dorst and Valkenburg in [46], and an alternative specifically

for dual lines by in Wareham, Cameron and Lasenby [134, 135] (these texts also provide a

118



a) b) c) d)

Figure 5.1: A dual line l =B+dn• is encoded as a sum of a Euclidean bivector and a support
direction or moment, its exponential e�l is a motor which generates a general rotation in
the direction of the orientation of B, depicted as the blue circle orbit. The bivector B encodes
the direction of the line as an oriented area, here rendered as a green disk. The dual of
that bivector, B?, is the red vector which points in the direction of the line. The direction
dn•, rendered as a green vector, encodes the line’s location relative to from the origin in the
following way: the inner product d ·B is the vector distance from the origin, rendered here
as a blue vector. b) By adding some proportion of B?n• to dn•, we can add a pitch to the
transformation generated by el , turning a general rotation into a screw. c) Reducing the pitch
proportion creates a tighter screw motion. d) Increasing the weight of B changes the period
of the transformation, that is the rate at which it rotates around the line.
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logarithm – a method for extracting the dual line l from the motor e�l ). In both texts, the ex-

ponentiation process requires treating these two motions separately, essentially decomposing

them.

The general solution to bivector exponentials provided by Dorst and Valkenburg is dis-

cussed in section 5.3.6. Here we note the results of Wareham, Cameron, and Lasenby: given

a dual line of the form l = qB+dn•(see Figure 5.1) where q is a scalar and B a unit Eu-

clidean bivector, an exponentiation decomposes d into parts parallel and perpendicular to B,

specifically:

el
= (cosq + sinqB)(1+d?n•)+ sinc(q)dkn• (5.1)

with sinc(x) = sin(x)/x and sinc(0) = 1. Please see their text ([134]) for details.

5.2.2 Logarithm of a motor

Theorem 1 of [134] offers proof of a mechanism for extracting the dual line generator l

from a motor el . This generator can then be linearly weighted and re-exponentiated (with

Equation 5.1) to create an interpolated twisting motion. In practice it is helpful to remember

to normalize the motor before finding its logarithm – given a motor M = T R where R is the

quaternionic rotor orientation and T = 1+ vn•
2 is the translator relative to the origin, normalize

the result M 7! Mnormalized using the reverse norm: M =

M
kMk where kMk = ±

p
MM̃ as

defined in Equation 2.21. With such a normalized motor we can apply the logarithm from

[134], replicated here for convenience:

log(M) = ab+ c?n• + ckn• (5.2)

where
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kabk= cos�1
(hMi)

s = sinc(kabk)

sq = kabk2 ⇤ s

ab = (hMi2n•) ·no)/s

c?n• =�abhRi4/sq

ckn• =�abhabhRi2i2/sq.

5.2.3 Interpolation of motors

The dual line logarithm of a motor M1 = el1 is a linearly interpolatable 2-blade l1, and

accordingly a common use of the logarithm of motors is to interpolate between two frame

positions M1 and M2 (see Figure 5.2). This provides a way to continuously transform one

frame into another through a combination of rotational and translational interpolation. There

are two methods to do this. We can find the transformation that takes M1 to M2 as M =M2M�1
1

and then formulate an interpolated value for scalar values t 2 [0,1] as Mt = et log(M)M1.

Alternatively, we can formulate Mt through linear interpolation of the individual logarithms

as

Mt = e((1�t)l1+tl2)
, t 2 [0,1] (5.3)

where l1 = log(M1) and l2 = log(M2). These methods give different results. The latter

method is useful when incorporating more than two motors into the results. For instance, as

illustrated in [134] and here in Figure 5.4, we can create a mesh deformation field through

trilinear interpolation of a volume. Given control frames Mi, j,k2{0,1} at the eight corners of a

rectangular box, we can define a frame Mt,u,v2[0,1] in between as shown in Figure 5.3
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Figure 5.2: Interpolation of motors using equation 5.3.

A new extension of this concept is given form in Chapter 6, when we interpolate coordi-

nate surface spheres.

5.2.4 Motor Compositions

In [127], Sommer, Rosenhahn and Perwass explore how two motor generating twists l1 and

l2 can be exponentiated at different constant rates and applied to a point to create various

shapes. We briefly experiment with this method (which they call “coupled motors”) in Figure

5.6, in order to introduce more general results in the next section.

5.3 Point Pairs as Generators

In Chapter 6 we will explore some of the implications of a powerful formalism unique to

the conformal model of geometric algebra: conformal rotors, which requires a deeper un-

derstanding of the general bivector exponential of a point pair. Point pairs contain all the

2-dimensional elements of our 5-dimensional algebra and so can be thought of as the most

general exponent. Let us take a closer look at the special conformal transformations produced

by exponentiation of this bivector element k . Further details on the section that follows can

be garnered from a close reading of the excellent text by Dorst and Valkenburg on this subject

[46], as well as Dorst’s follow up text [43].

The simple conformal rotors C = ek explored in this section are sometimes called transver-

sions or boosts or Möbius transformations. Unlike Euclidean isometries, these are special
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Figure 5.3: Trilinear interpolation of motor-valued frames at the eight corners of a rectangular
box through linear sums of their logarithms, as proposed in [134].

Figure 5.4: Mesh deformations created through trilinear interpolation of motors. 8 control
frames are positioned on the corner of a cube and their logarithms affinely combined through
trilinear interpolation.
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Figure 5.5: An example using motors as mesh deformations applied to one of the crystal
systems from Chapter 3. Each point p in the crystal structure is given a coordinate t,u,v 2
[0,1] within the rectangular box formed by eight control frames. A deformed position p

0
is

then calculated as Mt,u,v[no], that is, the interpolated motor at t,u,v applied to the point at the
origin.

conformal spinor operators which can straighten round geometric elements and bend straight

ones, while maintaining invariance of local angles. A component of inversive geometry,

conformal rotors can be considered a double reflection in two spheres with a common point,

much the same way a rotation can be considered a double reflection in two planes with a com-

mon line. Operating at the origin, these rotors can also be constructed through concatenation

of a sequence of operations: inversion in the unit sphere, followed by a translation, followed

by another inversion in the unit sphere. They can also be used to realize the Lorentz group

of transformations and thus to model the symmetries of relativistic physics. In this Section

and the next Chapter, we use them as a bending curvature operators that can generate orbits

and surfaces.

5.3.1 Bending the Line

Given a tangent vector vno at the origin with basis {e1no,e2no,e3no}, it can be translated by

T = e�
1
2 tn•

= 1� 1
2 tn• as k 7! T [vno] which can be interpreted as a point pair with zero

radius, encoding only a position, orientation and a weight. The action of such a null 2-blade,

when exponentiated as C = e�
1
2 k is what we now investigate.

As a conformal deformation which preserves angles but not distances, the point pair ex-

ponential C can be used as a curvature operator. Given a normalized line L, we can bend it
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a) b) c) d) e) f) g)

h) i)

Figure 5.6: Trajectories of a initial point p
0 7! Mt [p] created by applying two concatenated

motors of the form Mt = e�
1
2 t(c2l2)e�

1
2 t(c1l1), where t is in the range [0,1], c1 and c2 are

constants, and l1 and l2 are orthogonal dual lines. In figures a) - e) c2 is held constant while
values of c1 increase from left to right. l1 is a pure rotation (no pitch along the screw axis). In
figures f) - i) a third motor is concatenated, representing a screw motion in a third orthogonal
direction.
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Figure 5.7: Continuous bending of a line into a circle of radius r using a rotor of the form
1� 1

2r k (Equation 5.4), where k is a null point pair (in green) generated by translating a
tangent vector orthogonal to the line to a point on the line. The counter-rotor, 1+ 1

2r k , would
turn a circle of radius r into a line.

into a circle of radius r and curvature c =

1
r at point p by applying a boosting rotor of the

form:

C = 1� c
2

k (5.4)

where k is a zero-sized (null) point pair created by first translating a unit tangent vector or-

thogonal to the line to the point p on the line, and then weighting it by the target curvature.

By adding rather than subtracting the bivector part of equation 5.4, we can create a transfor-

mation that takes a circle with curvature c and straightens it into a line. The p�translated and

c
2-weighted tangent k generates a c curvature operator at p. The effects of interpolating this

operator or applying it to a mesh can be seen in the forms of Figure 3.7 and in our previous

work in [28].

In section 5.3.6 we detail a formulation for taking any circle to any line.
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a) b) c) d) e)

Figure 5.8: Conformal transformations of a point through transversion, sometimes called a
boost. a) Toroidal rotation of a point p around a real circle K is achieved as a mapping
p
0 7! fcenter[Ct [p]] where Ct = e�

t
2 k with k = K⇤ and t 2 [0,2p] and fcenter signifying a

normalization by taking the center of the result using Equation 2.60. Here we see the dual
of the real circle K is the pair of spheres k which meet at K. In b) and c), as the radius of
K shrinks to zero, so does the radius of its dual k . At radius 0, k is a tangent vector and the
action of Ct [p] is no longer modulo 2p , but rather brings p to the limit as t ! •. d) and e)
as the radius of K becomes negative, k represents the poles of the sphere which surrounds
the imaginary circle K. In this case, the action of C[p] acts as a sink which brings p to the
south pole of k . In all cases the transformation is along a circle p^k called the orbit of p,
as discussed in [46].

5.3.2 Orbits

We have seen that a line L, or rather its dual representation l , can be used to generate a

rotation around it. Since lines are specialized versions of circles, we might imagine that a

circle K, or rather its dual representation as point pair k (see Figure 2.12 in Section 2.4.3),

can be used to generate a toroidal rotation around it. Indeed this is case. In Figure 5.8 we

identify a circle K, its dual k = K⇤, and the action of the exponential C = e�
c
2 k on a point

p along the circular orbit p^k . Note the need for a normalization of the mapping p
0
, which

can be easily done in an implementation by extracting the center point of the result using

Equation 2.60.

5.3.3 Orthogonal Orbits

The previous orbits are simple in that the exponent is a 2-blade (remember, a blade is an

element that can be expressed as the outer product of vectors). As with dual lines, whose

directions can be summed to create a pitch along the axis of rotation (as illustrated in Figure
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5.1), so can point pairs be summed with other point pairs to create a secondary rotation. The

format of these orthogonal components is not as easy to dissect as it is in the case of dual

lines, and more care needs to be taken in choosing them (see [46]). The sum B of any two

point pairs ka and kb can be refactorized into a sum of two commuting point pairs k1 and k2

such that ka +kb = B = k1 +k2 and

k1k2 = k2k1. (5.5)

The commutativity allows one to calculate eB for a general bivector B as the composition

of two simple transformations eB
= ek1+k2

= ek1ek2 . In Appendix C of [43] Dorst proves

that such commuting 2-blade generators k1 and k2 are necessarily orthogonal to each other

(provided k1^k2 6= 0):

k1 ·k2 = 0 (5.6)

and, critically, that so are therefore the orbits around both for any given point x. We leverage

this orthogonality of orbits in the next Chapter to navigate curved coordinate systems. Spe-

cific details for splitting any general bivector into two commuting point pairs can be found in

[46], and we will look at what transformations this enables in a moment.

Before detailing the split of a bivector, let us first consider some geometric configurations

of well-chosen point pairs which already naturally satisfy the commutation criterion. Given

a circle K and its point pair dual k , its axis can be represented as a dual line l = n• ·K

which commutes with k (dual lines represent a subset of point pairs, see Table 2.5). Thus

weighted combinations of k and l can create orbits that combine a motion around the circle

as in Figure 5.8a and around the dual line axis of the circle as in Figure 5.1a. If these weights

are harmonically related, then the orbit will close into a knotted formation, as is illustrated in

Figure 5.9.

For reasons that will become apparent soon, let us call the circle and its axis, whose dual
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Figure 5.9: Knotted orbits composed of a simultaneous rotation around a circle and its axis.
The generators, k1 = K⇤ and k2 = n• ·K, are orthogonal and commute, and the compound
conformal rotor Cq = e�

q
2 c2k2e�

q
2 c1k1 with q 2 [0,2p] and scalar constants c1,c2 generates

the full orbit when applied to some input p. If the range [0,2p] is divided into n steps then a
single small simple rotor C = e�

p
n (c1k1+c2k2) can be applied iteratively n times to some input

p. Again we normalize the result by finding its center using equation 2.60. In the figures
above, the coprime harmonic constants{c1,c2} represent the ratio of windings arounding each
{circle, axis} fiber. These are, from left to right, {3,2}, {4,3}, {5,3}, {10,1}, and {1,10}.

representations generate the rotation, fibers. What other pairs of fibers provide this naturally

commuting split? Based on our own visual experiments with a computer, it appears that

we can use a mapping of the 2-sphere (a “regular” sphere in 3D space) to the 3-sphere (a

sphere in 4D space) called the Hopf fibration to create antipodal linked fiber pairs suitable

for generating knotted orbits (i.e. the fibers commute).2

5.3.4 The Hopf Fibration

The Hopf fibration is a mechanism for representing a 3-sphere, which is a sphere in 4 dimen-

sions, as a bundle of circle fibers in 3 dimensions. The topology crops up in various branches

of mathematics and physics, including quantum mechanics. The mapping takes each point on

the surface of a 2-sphere – which is our typical sphere in 3 dimensions and which we will call

the preimage – to a circle, thereby extending each point by one dimension. The circle and

axis from Figure 5.9 can be thought as fiber mappings of the points at the south pole and north

pole of our preimage, respectively. Points along the longitudinal lines connecting the poles

represent a continuous transformation of the circle to its axis. By this mapping, the fibers of

any two antipodal points on the 2-sphere preimage are orthogonal commuting blades.
2Etienne Ghys and Jos Leys provide an interesting visualization of modular flows in higher dimensions

online at [58], which investigates the connection between the Hopf fibration and knots.
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Figure 5.10: Antipodal points on a sphere are mapped to two Hopf fibers which are then
used to generate a compound conformal orbit of some input point. As the vector speci-
fying the antipodal points rotates, the resulting fibers create homotopic variations of the
knotted trajectory of the point: the knot remains a {3,2} torus knot and never crosses it-
self. Videos demonstrating this commutation property, which allows us to keep a knot in-
variant as we smoothly transform the fibers around which it winds, can be viewed online at
https://vimeo.com/wolftype/videos.

130



a) b) c) d)

Figure 5.11: The initial components of the Hopf fibration are a circle and its axis representing
fibers over the south and north poles of the 2-sphere. b) The circle is boosted into a line. c)
The line is twisted into the axis. d) Composition of the boost and twist make a fiber bundle
over a meridian of the 2-sphere.

A Boost with a Twist

Generating the transformations of the circle fibers in Figure 5.10 requires a composition of a

bending operation, which straightens the circle, and a twisting, which rotates it by 90 degrees.

Here we show how the canonical Hopf fibration map can be constructed by a boost followed

by a twist, each parameterized on spherical coordinates q ,f . The fibration maps the 2-sphere

to the 3-sphere by taking each point on the 2-sphere to a circle fiber. If we map the point at the

south pole to a circle, then the antipodal point at the north pole is mapped to the axis of that

circle. Thus we start by noting that the fibration of a longitudinal line from pole to pole can

be generated by a rotor which takes a circle to its own axis. To construct this transformation,

we compose a boost which straightens the circle into a line, and a twist which screws that line

into the axis. The combined process of boosting and twisting is seen in Figure 5.11.

Explicitly, to map the point pqf with spherical coordinates q ,f (in radians) on a 2-sphere

to a circle fiber of a 3-sphere, we start with a unit circle K at the south pole (where f =�p
2 )

and a base axis l =�n• ·K at the north pole (where f =

p
2 ). We then define the transversion

Cq ,f which takes K to a line using Equation 5.4:

Cq ,f = 1+ kf novq (5.7)

where kf =

1
2 +

f
p and scales in the range [0,1] and where vq is a unit vector in the plane of

the circle. At f =

p
2 , C takes the circle to a line:
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Lq =Cq , p
2
[K] (5.8)

The corresponding twist motor Mq ,f can then be generated by finding the ratio of the initial

axis L with the line Lq .

Mq ,f = ekf log( L
Lq

) (5.9)

The full transformation rotor KH can then be defined:

CH
q ,f = Mq ,fCq ,f , q 2 [0,2p], f 2 [�p

2
,

p
2
] (5.10)

Note that as a product of a twist and a boost, CH is not a simple boost composed of just

a scalar and bivector, but now also contains the quadvector e12E, e13E, e23E, e123no, and

e123n•.

The explicit formulation in Equation 5.10 of a conformal rotor C which takes a circle to

its own axis can also be calculated by taking the square root of their ratio and then using

the bivector split approach developed by Dorst and Valkenburg in [46]. The construction is

more involved than typical rotor ratios, however, since the ratio of circles is not a simple rotor

but rather contains a quadvector component. In Section 5.3.6 we take a brief look at this

formulation.

5.3.5 Taking a Sphere to a Sphere

In the next chapter, given two spheres, s1 and s2, we will find the conformal rotor C that

takes one to the other. The absolute transformation can be calculated as
q

[

s2
s1
]normalized

using equation 2.38. In practice, however, we are usually more interested in constructing a

continuous transformation, which requires finding the point pair k which we can weigh in

the range of [0,1] and then re-exponentiate. We can calculate k as half the log of normalized
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Figure 5.12: Twistor meshes representing the 3-sphere Hopf fibration generated by applica-
tion of the transformation rotor CH

q ,f onto a base circle.

s2
s1

using equation 2.68: k =

1
2 log([s2

s1
]normalized). Thereafter, the rotor Ct = e�

t
2 k
, t 2 [0,1]

can be used to take one sphere to another.

5.3.6 Taking a Circle to a Circle

In the very general case of circle-to-circle transformations (which, of course, includes circle-

to-line transformations) we have found greater control is possible when calculating the loga-

rithm of the square root (that is, as opposed to calculating half the logarithm). The main rea-

son for this supposition is that deliberate steps can be taken when calculating the square root

to account for the special case when the two circles are orthogonal to each other: specifically,

we detail how to pick a particular direction of interpolation when more than one direction, or

an infinite number, are possible.

Section 5.2.2 in Dorst and Valkenburg’s text details how to take the square root of such a

general ratio, and sections 5.3.3 and 5.3.4 of their text explain the use of the exterior derivative

of its action to extract the logarithm and then split it into two commuting bivectors. Rather

than duplicate those somewhat intricate equations here, the reader is encouraged to examine

that reference. Here we note some subtleties when using those formulations, giving particular

focus to the case of orthogonally linked circles.

We will note here some very useful results of their work in finding square roots and
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logarithms of general bivector exponentials in R4,1, which can be applied to the ratio of

circles. First, Equation 5.4 of their text demonstrates that the square root of such a ratio can

be expressed as

p
C = (1+C)

1+ hCi�hCi4
2((1+ hCi)2�hCi24)

1+ hCi+ hCi4 +
q

(1+ hCi)2�hCi24r
1+ hCi+

q
(1+ hCi)2�hCi24

(5.11)

with a special case (for the instance when C is the ratio of two orthogonal circles) that is

expressed in Equation 5.16.

Let us now say we have a rotor C that is the square root of some normalized rotor ratio

C =

q
[

Kb
Ka
]normalized. Following a result from [75], Dorst and Valkenburg show we can find

half the curl (exterior derivative) of this rotor C and then split it into commuting 2-blades.

F± =

1
2

F(1± kFk
2

F2 ) (5.12)

where

F = 2(hCi4�hCi)hCi2. (5.13)

and

kFk= 4
q

(2F2�F2
)F2 (5.14)

Equation 5.12 splits the curl into two commuting 2-blades of the form F = S
+

+ S� =

sinh(B
+

)+ sinh(B�) that can each be fed into the first argument of Equation 2.68 to find the

logarithms. The second argument to Equation 2.68 can be extracted using equation 5.26 of

[46]:
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cosh(B±) =

8
>><

>>:

�hhC2i2/S⌥ if S2
⌥ 6= 0

hC2i if S2
⌥ = 0.

(5.15)

Finally, we note that Equation 5.12 requires defining the inverse of F2, which is a scalar

plus a quadvector, and the usual inversion of versors from Equation 2.18 does not apply

here. Still, the inversion takes a simple form: Dorst has observed3 that the inverse of such a

multivector X is X�1
= (hXi�hXi4)/(hXi2�hXi24).

Orthogonal Circles

Many interesting forms can be constructed from the interpolation of two orthogonal circles,

which is a special case that requires care when implementing the algorithms of [46].

Given two orthogonal circles K1 and K2, their normalized ratio

C = (

K2

K1
)/k(K2

K1
)k

represents twice the transformation that takes K1 to K2. Its square root can be found using

equation 5.5 of [46]:

p
C = (

1+C
2

+B
1�C

2
) (5.16)

with the specific condition that B, a 2-blade, squares to �1 and commutes with hCi4 (the

quadvector portion of C). In an implementation, we must create such a B and in Algorithm 5.1

we detail a method for construction which enables control over the direction of transformation

through selection of a unit tangent vector. Figure 5.13 illustrates this method.

3Personal correspondence.
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Algorithm 5.1 Technique for constructing a suitable Bivector B for Equation 5.16, to be
applied when calculating the square root of a rotor ratio C if (1+C0)

2
=C2

4.
procedure CONSTRUCT B FOR ORTHOGONAL CIRCLES

C [K2/K1]normalized . The normalized rotor ratio of two circles.
S C4 . The quadvector portion of C.
if (1+C0)

2
=C2

4 then . Orthogonality Condition.
s1 K1/(�n• ·K1) . The imaginary dual sphere surrounding circle K1.
s2 K2/(�n• ·K2) . The imaginary dual sphere surrounding circle K2.
v [s2�s1]normalized . The unit vector between circles.
k  Ts1 [vno] . Tangent vector translated to center of circle K1.
B [(k ^S⇤)⇤]normalized . B is the normalized bivector meet of k and S.

end procedure

a) b)

c)

Figure 5.13: Isoclinic rotations generated by the ratio of two orthogonal circles. a) and b)
illustrate two different directions of interpolation based on two different tangent vectors vno
(represented as arrows) of Algorithm 5.1. c) In the case of a circle and its axis, the vector v
must be chosen using some other method, such as selecting a particular angle q .
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a)

b)

Figure 5.14: a)The action of conformal rotors C take points of a circle K2 to corresponding
points on circle K2. b) If the circles are linked and orthogonal, the action is an isoclinic
Clifford rotation which can induce knotted orbits through harmonic weighting of the 2-blades
that emerge from the bivector decomposition.

Modular Characteristics

Given orthogonally linked fibers Ka and Kb and an orbit generated by the split of normalized
q

Kb
Ka

, with each component of the split assigned a P and Q weighting:

• If Ka and Kb are linked, the induced orbital flow has no singularities

• if Ka and Kb are linked and orthogonal, the orbit is periodic (knotted)

• To discretize a PQ orbit into n steps, weigh by 4n/P and 4n/Q

• At n/P and n/Q, a point on Ka is taken to a point on Kb

• At 2n/P and 2n/Q, a point on Ka is taken through Kb and back to Ka

• At 3n/P and 3n/Q, a point on Ka is taken through Kb, through Ka, and back to Kb

This happens for certain harmonic ratios of P and Q. We have found these characteristics

hold through geometric experimentation on a computer, but do not provide proofs of these
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statements. They do, however, hint at the connection between spinors in conformal geometric

algebra, knotted orbits, and the modular group.

5.4 Discussion and Future Work

The wealth of transformations available of the form eB – with B some bivector in the confor-

mal model – is a long cry from the bare bones simplicity of complex numbers and quaternions.

These rotors can be compounded to generate not just proper Euclidean transformations – ro-

tation, translation, and scaling – but also the conformal transformations in both simple (with

B a 2-blade) and compound (with B a general bivector) form.

From the perspective of raw synthesis techniques, the linear transformations of dual lines

offer a mechanism for mesh warping that avoids kinking behavior. While much work has

been executed with respect to the motor algebra and representation of shapes and their de-

formations using twists amd motors, the use of conformal transformations for deformation

and synthesis requires greater attention. It is evident that conformal transformations enable

powerful articulations, producing continuous mappings of generalized circles and knotted

orbits. Following [46], we have specified algorithms for controlling isoclinic rotations, and

uncovered a relationship between antipodal Hopf fibers and commuting point pairs. It would

serve us well to investigate this connection further in order to explore potential applications in

modelling quantum behavior. The Hopf fibration is usually defined in terms of two complex

numbers or quaternions, and understanding its structure as an isoclinic transformation which

bends and twists a circle into its own axis may provide insight into how to visualize or nav-

igate this manifold. Developing an algorithm which maps into our geometric representation

to the standard methods will help make contact with the rich literature on its topology. For

now, to build our intuition, in Chapter 6 we will introduce a novel use of these expressive

conformal operators for the generation of curved surfaces and volumes.
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Chapter 6

Curvature: Constructing Cyclidic Nets

There are no cubical heads, eggs, nuts, or planets.

– Buckminster Fuller

6.1 Summary

Conformal immersions are harmonic and numerically stable surfaces whose tangents scale

isometrically, providing many elegant geometric properties of use in design. This chapter

maps these forms within the context of discrete differential geometry in order to outline an

approach to synthesizing curved surfaces with applications in architectural geometry, machin-

ing, and computer graphics. Inspired by Dorst and Valkenburg’s “Square Root and Logarithm

of Rotors” paper [46], we reformulate the rationalization of cyclidic nets, piecewise smooth

surfaces characterized and controlled directly by their tangents.

In their remarkable paper, Dorst and Valkenburg rigorously decompose general rotations

in the 3D conformal model of geometric algebra into commuting point pair generators, re-

vealing much of the beauty in the algebraic machinery that generates any structure-preserving

3D motion. This is further explored in a more recent text by Dorst [43]. To explore some of

the implications of these works, we outline a parametric approach to design which composes

139



surfaces from out of that decomposition, suggesting the central role of conformal rotors in

the establishment of a discrete calculus using the geometric algebra mechanism.

The benefits of conformal mappings in design are known in various fields. In architectural

geometry, discretization of conformal mappings allows the design of doubly-curved1 forms

with torque-free nodes and consistent offsets [16]. In computer graphics, conformal mappings

have been used to deform meshes intuitively and in a way which preserves details and textures

[32, 31].

Leveraging Dorst and Valkenburg’s analysis of general conformal rotors as commuting

(and orthogonal) generators, we use Möbius geometry to reformulate the discrete cyclidic

nets described by Bobenko and Huhnen-Venedey in [17], who use Lie Sphere Geometry (in

the space R4,2) to build on the original rationalization of Martin in [99] based on Dupin’s

cyclides [48].

We find that the conformal rotor construction provides a straightforward mechanism for

linearly rationalizing curved surfaces within the already rich context of conformal geometric

algebra.

6.2 Cyclidic Nets

Cyclidic nets are a parameterization of continuously smooth surfaces introduced by R. Mar-

tin in his 1983 thesis which enable the digital designer to construct surfaces by specifying

curvature directly at tangents. Motivated by a desire to develop a technique to form firmly

grounded in geometry, Martin showed that these biquadratic meshes are piecewise smooth

patches of Dupin cyclides, and thereby possess a simple algebraic representation. Built with

families of generalized circles, discrete differential geometry over these surfaces exhibits

excellent convergence to the continuous case. As a result, rationalization and efficient eval-
1Buckminster Fuller argues the central role of curvature in generating stable forms. In section 106.10 of

Synergetics he writes “Compound curvature, or sphericity, gives the greatest strength with the least material.
It is no aesthetic accident that nature encased our brains and regenerative organs in compoundly curvilinear
structures. There are no cubical heads, eggs, nuts, or planets.”
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uation of these surfaces – and their general form as Darboux cyclides – has been the subject

of much research [52, 116]. Some modern techniques, such as developed by Bobenko and

Huhnen in [17], rely on Lie sphere geometry, a projective model of contact-based geometric

constructions that encapsulates the conformal model of geometric algebra. Others, such as

Krasauskas and Zubé in [87], use geometric algebra to construct generic Darboux cyclidic

patches using bilinear interpolation of quaternion-weighted Bézier arcs. In [86], Krasauskas

uses Laguerre geometry, another subset of Lie sphere geometry, to create surface patches.

In other work specific to GA and CGA, Doran explores circle and sphere blending through

direct linear interpolation of the primitive elements (that is, without rotors, conformal maps,

or logarithms) [38], and Druoton et al explore constructions of Dupin cyclides by generating

the full families of tangent spheres in [47].

Our current exploration differs from these others in its reliance on orthogonally-composed

conformal rotors and their logarithms to rationalize blends between coordinate surface ele-

ments. We emphasize the use of sphere-to-sphere conformal transformations to discretize

these coordinate surfaces, allowing ratios of basic geometric primitives to guide our ratio-

nalization. We provide a more controllable and general result than our experiments in [28],

where we examined the use of interpolated null tangents to create “boosted surfaces”.

Our technique is grounded in a geometric (spherical) discretization of curvilinear coordi-

nate systems, and our mappings apply as easily to tangents and normals as they do to points,

representing a novel approach to constructing a general operator on a surface.

6.3 Principal Patches

Throughout the literature on parametric surface design with Dupin cyclides, a principal

patch is created through bilinear rationalization of four points on a circle (Figures 6.1 and

6.2). Given these four concircular points and the orientation of a frame on one of them, the

patch surface is determined. Surfaces constructed out of such patches are called cyclidic nets.
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u

0

v1

u

1

v0

Figure 6.1: A four-sided principal patch is constructed from four concircular points with
orthogonal corners. Principal contact edges lie along circles.

Figure 6.2: Given four points on a circle, one frame of orientation at one point (i.e. 3 degrees
of freedom) is sufficient to fully characterize the patch.

We seek here to develop a system for constructing and discretizing these patches.

6.3.1 Outline of the Algorithm

To rationalize a principal patch – that is, to evaluate the position of a point p at coordinate

(u,v) – we seek a particular conformal mapping of a 2-manifold into 3D f : M!R3. In what

follows, we will formulate this map in terms of two commuting and orthogonal transformation

generators, ku and kv, each one a 2-blade point pair in the conformal geometric algebra of

R4,1.

Labelling each side of the patch u0, u1, v0, and v1 (Figure 6.1) maps our edges to a

2-dimensional (u,v)-coordinate system in the range of [0,1] where the subscript denotes a
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constant coordinate value, e.g. u0 : u = 0. One transformation generator, ku, will be respon-

sible for interpolating u0 to u1 and the other, kv, will be responsible for interpolating v0 to

v1.

Each edge is part of a coordinate curve circle Ku0 ,Ku1 ,Kv0 , and Kv1 which, as we will

see, are themselves each part of larger coordinate surface spheres su0 ,su1 ,s v0 , and s v1 (see

Figure 6.4). We define ku and kv as the principal logarithms of conformal rotors Cu and Cv,

which we define as the square root of the normalized ratio of coordinate surface spheres.

Thus, Cu =

q
su1

/su0

ksu1
/su0k and Cv =

q
s v1

/s v0

ks v1
/s v0k . These rotors encode the transformation that

take one constant-coordinate surface (su0) to another (su1).

As discussed in Section 2.4.5, because we will be executing a continuous transformation,

rather than calculate the square root of normalized ratios, we calculate half the logarithm of

normalized ratios. For instance for ku with C2
u = (su1

/su0
)/(ksu1

/su0k):

ku =
1
2

log(C2
u) (6.1)

and

kv =
1
2

log(C2
v ). (6.2)

These logarithms are 2-blade point pairs which can be linearly weighted and then exponenti-

ated to interpolate the transformation. For ux evaluated in the range [0,1]:

Cux = exku (6.3)

and

Cvy = eykv (6.4)

In Figure 6.3 we draw the 2-blades ku and kv in their undualized representation as circles.
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�

u0

�

u1

�

v1

�

v0

Figure 6.3: To construct a cyclidic patch, we generate rotors from spheres tangent to the
circular edges of the patch. Each sphere represents a constant coordinate surface. Individual
principal ’simple’ rotors Cu and Cv in the u and v directions of a patch are the square root of
the normalized ratio of coordinate surface spheres. The logarithms of these rotors are point
pairs. Here we render their undualized representation as circles, both real (in the case the
principal coordinate surface spheres intersect) and imaginary (when they do not).

The geometric constraints on the concircular system ensures that the point pair generators

commute, a condition which allows us to compose them into a conformal rotor:

Cuxvy =CvyCux (6.5)

with ux and vy each evaluated in the range of [0,1]. These rotors are applied to a point (or other

geometric primitive) at one corner of the patch, p = p(0,0), at (u0,v0) in order to transform it

to a point p(x,y) at (ux,vy). Thus our mapping is:

f : (x,y) 7!Cuxvy [p]. (6.6)

6.3.2 Constructing Tangents

To better seat our treatment within the larger construction of a geometric calculus, we will

emphasize the direct use of tangent elements accessible in the conformal geometric algebra.

This also enables us to leverage the findings of Bobenko and Huhnen-Venedey in their use of

144



Lie geometry, based as it is on contact elements. We therefore make explicit use of several

basic operations in CGA relating tangent elements to round elements.2 The first,

K = pcŜ (6.7)

is the extraction of the tangent bivector of a direct sphere S at a point p (assuming p lies on

S) where the hat symbol ˆ signifies an involution (Equation 2.23 – for a k-graded element:

X̂k = �1kXk). For a sphere S, Equation 6.7 returns a null-valued (zero radius) circle. For a

circle K the same expression returns a null-valued point pair:

k = pcK̂ (6.8)

As a corollary we can build round elements from a tangent and a point:

K = p^k (6.9)

which is the direct construction of a circle from a point p on it and tangent vector element k

along it. Similarly,

S = p^K (6.10)

is the direct construction of a sphere from a point p and tangent bivector element K. We also

find it a useful to remember that homogeneous tangent vector elements k and K are easily

constructed by translation of a tangent vector and bivector at the origin, and that geometrically

speaking they are null point pairs and null circles, possessing a weight and an well-defined

orientation but no radius.
2Many components of these algorithms can be found in the essential table 14.1 on page 407 of [45], and in

section 15.2 of that text.
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Figure 6.4: To discretize a triply orthogonal curvilinear coordinate system we can use a 6-
sphere coordinate system as a local unit (for more on different types of coordinate systems,
see Moon and Spencer [104]). Consider an orthogonal frame of coordinate axes {ek} en-
coded by null tangents at p with k = 1,2,3. Coordinate surfaces {s k

j } are represented by
spheres tangent to the frame with normal ek. Given scalar coordinate weights {xk} assigned
to the {ek} each s k

j sphere represents a surface of constant xk as we travel along the e j di-
rection. We use superscripts to denote the coordinate that is held constant, and subscripts to
denote the tangent direction along which we travel. To create circular coordinate curves, we
specify two constant coordinate surface spheres (x3

= const, in blue) with e3 as a normal,
each one corresponding to a different orthogonal tangent direction denoted in the subscript.
The coordinate curves x1 and x2 are circle intersections of the (blue) contact surfaces s3

1 and
s3

2 with s2
1 and s1

2 respectively, a relation known as Dupin’s theorem. A patch construction
could proceed by picking two points p1 and p2 along these curves to define a circle with p
which we can now interpret as the foundation of the principal cyclidic patch of Figure 6.1.
Then, after picking a fourth concircular point we can identify the local coordinate surfaces at
all points using the iterative mechanisms of Section 6.3.5. Not figured are the two coordinate
surfaces s1

3 and s2
3 of constant x1 and x2, respectively, along the e3 direction. Using this third

direction to discretize volumes is explored in Section 6.4.
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6.3.3 Triply Orthogonal Coordinates

As Figure 6.4 demonstrates, we can begin our synthetic construction with the notion of a

triply orthogonal local frame {ek|k 2 1,2,3} at p. We label s i
j the principal contact sphere

with normal ei at p along direction e j, which should be understood as representing a constant

coordinate surface along the e j direction. The raising of the index associates our construction

with Hestenes’ notation for curvilinear coordinate systems in [69].3 In the case that it is

unambiguous in which direction we are moving, we drop the lower index. In our notation for

cyclidic nets of the previous section, we omit the subscript since it is clear in which direction

we are moving, and instead specify only the coordinate that is held constant. The full notation

for su0 would read su0
v to signify a surface of constant coordinate (u = 0) as we move the in

the v direction along the patch.

The coordinate curve in the ei direction is defined as the union of constant coordinate

surfaces
V

s j
i , j 6= i. Note that in this sense each surface s j

i encodes a partial derivative
∂ j
∂ i and each coordinate curve circle can be thought of as the undualized exterior product of

partial derivatives which contribute to its definition (see Footnote 3).

6.3.4 Null Tangents as Coordinate Surface Generators

To emphasize the fact that our frame is a null tangent frame at a point in space, we write

{kk} to signify the tangent vectors {ek} have been translated to point p:

kk = Tp[novk] (6.11)

3In [69], Hestenes proposes the “tangential derivative as the most fundamental of all concepts of derivative”,
and explains that the relation between a tangential frame {ek} on a manifold and its inverse reciprocal frame
{ek} reveals that all “the coordinate curves are intersections of coordinate surfaces” (p.34, emphasis in original).
Intriguingly, this relationship is precisely Dupin’s theorem, and suggests to us that the rationalization of cyclidic
transformations using the mappings of orthogonal conformal rotors could provide clues as to how to discretize
differentiable manifolds in general in the conformal model – namely, by treating reciprocal tangent frames as
normals of coordinate surface spheres.
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where Tp is a translation rotor and vk is the Euclidean vector of our local ek. One can create

constant coordinate surfaces by applying a simple conformal rotor e�
c
2 kk to a plane through p

with ek normal, thereby bending the plane into a sphere through p. As we discussed in Section

5.3.1 and in a previous text [28], such a curvature generator is constructed by translating a

tangent vector from the origin to p, thereby creating a null point pair k which squares to 0.

Our coordinate surface generating rotor is

C = 1� c
2

k, (6.12)

a simple result which stems directly from following the rules for exponentiation of a 2-blade

in Equation 2.62 which states that

C = e�
c
2 k

= 1� c
2

k (6.13)

when kk = 0. In these equations, c = 1
r is a scalar-valued weight that specifies the curvature

in the k direction, where r is the radius of curvature (see Figure 5.7). In a triply orthogonal

coordinate system, as we travel along one direction, there will be two constant coordinate

surfaces, one for each other direction. For each tangent vector kk we can sum curvatures in

the other two ki and k j directions, essentially adding partial derivatives in the exponent:

Ck = e�(ciki+c jk j) (6.14)

Applied to a point Tk[p] that has been translated along kk, this rotor specifies a new point pk

that has travelled along a curve in both ki and k j directions:

pk =CkTk[p] (6.15)
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6.3.5 Coordinate Surface Spheres at Four Points on a Circle

If the p1 and p2 along the coordinate curve are already known, then the coordinate surfaces

can be constructed directly by application of Equation 6.10. This happens in practice when

we are given four concircular points {p(i, j)} and a starting frame at one of them. Figures

6.1, 6.2 and 6.8 were in fact generated this way. k2 of tangent frame {kk} at p(0,0), notated

k(0,0)
2 , is dual to a tangent bivector K(0,0)

2 which wedged with the point p(1,0), creates a

coordinate surface sphere s2
1 on which another tangent vector k(1,0)

2 at p(1,0) we can extract

by application of Equation 6.7:

k(1,0)
2 = (p(1,0) · ((k(0,0)

2 )

�⇤ ^ p(1,0)))⇤.

The entire tangent frame at p
(1,0) can be similarly derived,

k(1,0)
i = (p(1,0) · ((k(0,0)

i )

�⇤ ^ p(1,0))⇤

as can subsequent points p(1,1) and p(0,1) and their associated local coordinate surfaces. If the

points are numbered sequentially counterclockwise around the circle we have

kn
i = (pn · ((kn�1

i )

�⇤ ^ pn
)

⇤ (6.16)

More compactly we can manipulate the tangent bivectors Kn
i themselves,

Kn
i = pn · (Kn�1

i ^ pn
). (6.17)

We visualize their dualized representation as tangent vectors in Figure 6.5.
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a) b) c) d)

Figure 6.5: a) Given four concircular points and one frame at one point, all other frames are
calculated by applying Equation 6.17 counter-clockwise from the known frame. We thereby
extract tangent bivectors from coordinate surfaces generated at each point. Here we draw
the normalized dual of the resulting tangent bivectors. Note that consecutive tangent frames
are reflections of each other. b) To generate a patch, we interpolate between two coordinate
surfaces bilinearly. c) Coordinate curves along the edges of our patch are circles. d) The rotor
ratio of coordinate surfaces applied directly to the circular edge curves begins to suggest a
surface.

Figure 6.6: Taking a sphere to a sphere by exponentiation of the linearly weighted log of a
simple rotor. Here we draw the circle cross section of the sphere during its transformation.
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6.3.6 Rationalization of Coordinate Surfaces with Simple Rotors

With the system of principal contact elements in place with Equation 6.17, let us explore their

rationalization, a method of discretizing the transformation of curvatures. In the intuitively

quantitative world of geometric algebra, we must calculate ratios of elements in order to

rationalize their transformation. Thus we first calculate the ratio of spheres, for example to

rationalize the u coordinate surfaces we find the ratio:

Cs =
su1

su0
(6.18)

which gives us a scalar and point pair bivector. We normalize this product by dividing out the

reverse norm: Cn =Cs/kCsk, where the reverse norm is defined as in Equation 2.21.

Our normalized rotor Cn represents twice the transformation that takes su0 to su1 . Thus,

we take half its logarithm as in Equation 6.1, and this logarithm we can weigh linearly and

then re-exponentiate using Equation 6.13. The logarithm itself is expressed in Equation 2.69.

We calculate kv the same way, and now have the components necessary to plug into

Equation 6.6. Below we use Equation 6.20 – which is a simple modification to Equation 2.69

– to account for two choices of direction of motion around the orbit.

6.3.7 The Direction of Interpolation

Given two intersecting spheres, the conformal transformation between them can occur clock-

wise or counterclockwise. As in any rotation, the direction in which the transformation occurs

determines the points that are evaluated along the way. Figure 6.7 illustrates this difference,

and presents the need for additional measures to ensure the correct orientation of rationaliza-

tion.

The direction is determined by the log function. The default direction uses

atan2(
p
�s2

,c)p
�s2

s (6.19)
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a)

b)

Figure 6.7: Given two intersecting spheres, there are two directions that one sphere can con-
formally transform into the other. a) Circles undergoing transformation in both directions, b)
a surface generated in two alternate directions. Additional measures (such as Equation 6.21)
are needed to determine the correct direction and to determine the full interval of a given
direction.

whereas an alternative uses a modified weighting in the opposite direction:

�(p� atan2(
p
�s2

,c))p
�s2

s (6.20)

We find through experiment on a computer that using Equation 6.20 is necessary for

calculating ku (resp., kv) precisely when our initial corner point p(0,0) has a negative dot

product with the opposing coordinate surface sphere su1 (resp., s v1). Calling our alternative

logalt we have

ku,v =

8
>><

>>:

logalt(Cu,v) if p(0,0) ·su1,v1
< 0

log(Cu,v) otherwise.
(6.21)
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Figure 6.8: a) A patch is a C1-smooth blend between coordinate surfaces of constant coor-
dinate w0, that is as a constant along the normal axis. Here sw0

v0 (resp. sw0
v1 ) represents the

principal contact sphere change in the normal along the v0 (resp. v1) edges. b) and c) Two
views of principal contact spheres tangent to the surface frames.

6.3.8 Surface Blending

Thus far (with the exception of Figure 6.4) we have primarily visualized coordinate surfaces

in two directions: su
v and s v

u . Here we discuss the third coordinate surface direction sw

which can be constructed with respect to both u and v as sw
u and sw

v . These surfaces are

the osculating spheres tangent to the uv cyclidic surface. We use the notation sw0 on these

surfaces to indicate that uv surface itself lies on the constant (w0 = 0) in the direction normal

to the surface. Given two contact surface spheres, two points on one of the surfaces is suffi-

cient to identify the four concicular points from which a blending patch can be constructed,

essentially one that interpolates between the two sphere surfaces (Figure 6.8a).

Not any circle through these two points can carry this patch – Algorithm 6.1 details a sim-

ple construction for finding a patch that blends between the two osculating contact spheres.

Figure 6.9 illustrates the method, and Figure 6.10 depicts various results. This important tech-

nique reveals that four points will be concircular if they are constructed with the orthogonal

plunge.
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Algorithm 6.1 Defining principal patch parameters from two osculating contact spheres.

1. Pick a point p on one of the spheres sv1 .

2. Find the plunge K through p orthogonal to both spheres: K = p^sv0 ^sv1 .

3. Find the first intersection point of K with sv0 .

4. Repeat for another point on sv1 .

5. The tangent normal to sv1at p defines k3. Pick a rotation angle about this axis to define
k1and k2.

6. Define {kk} for each frame using Equations 6.16 and 6.17.

p

3

�

v1

�

v0

K

Figure 6.9: Construction of a circle net to blend between two spheres. Given a point p on
sphere sv1 , we calculate the orthogonal plunge K by wedging p with both spheres: K =

p^sv0 ^sv1 . We then find the intersection of K with sv0 . We repeat for a second point on
sv1 . All four points thus defined will be concircular. k3 is the tangent normal to the surface
patch at p.

Figure 6.10: Various patches blending two spheres.
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6.4 Application: Freeform Structures

Much of the interest in cyclidic patches comes from their structural properties. In the in-

troduction to this Chapter we discussed some of these benefits. First, as the mappings are

conformal, all local angles are preserved, which eliminates shearing. This results in torsion-

free nodes which facilitates physical construction [16, 97]. In computer graphics, this same

property helps preserve texture and mesh detail under deformation [31]. Second, as patches

are built with circles rather than lines, they provide curvature discretizations which converge

more quickly to the continuous case. Third, both of the first two properties are shared by

offset surfaces along the normals, and are in fact generalizable to an n-D smooth orthogonal

coordinate system for working with differential geometry [17].

As a result, parameterizing surfaces and volumes with an orthogonal curvilinear sys-

tem can facilitate their deformation and construction. Such designs can come to fruition

as freeform architectures covered in flat glass, where offsetting along normals to the surface

is critical, and where the ability to manufacture a single 90 degree node reduces costs. The

ability to blend between shapes in a precise way is also useful in machine-milling of small

parts, where oddly shaped curved pieces are often necessary [52, 86]. Conformal lattices can

provide a robust way to animate virtual forms.

C1 smooth surfaces are built from a series of patches in Figure 6.11. A new patch is added

to an existing edge by specifying an additional tangent sphere. The two additional tangent

frames necessary to define the second patch are then found using the procedure outlined in

Algorithm 6.1. This process can also occur in a direction orthogonal to the first patch, as

shown in Figures 6.12 and 6.13. In this way a 3D volume can be described, as demonstrated

by Bobenko and Huhnen-Venedey in [17], where it is shown that three patches are sufficient

to define a six-sided volume, or hexahedron. Here we show how such a system can be used

to warp a mesh in a way similar to the trilinear interpolation of motors demonstrated in Figure

5.4.
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Given a hexahedron of patches arranged as six sides of a warped cube, the technique for

specifying a point at coordinate (x,y,z) with x,y,z 2 [0,1] requires transforming the normal

direction sw coordinate surfaces on opposite sides of the cube and then finding a new rotor

from their ratio. The complete steps are enumerated in Algorithm 6.2 and its application to

finding the transformed positions of a warped sphere in Figure 6.14.

Algorithm 6.2 Calculating A 3D Conformal Coordinate

1. Given a hexahedron (six-sides) of surface patches, pick the two opposing patches at
w = 0 and w = 1.

2. Calculate the Cux rotor of each of the two opposing patches using Equation 6.3.

3. Apply these rotors to the constant coordinate osculating surfaces sw0
u0 and sw1

u0 of each
corresponding patch. Call these transformed two spheres sw0

ux and sw1
ux .

4. Generate a transformation from the ratio of these two transformed surfaces as Cwz =

e�
1
2 zlog([sw1

ux /sw0
ux ]normalized).

5. Multiply this transformation by Cu,v, the bilinear rotor of the w = 0 patch, found using
Equation 6.5.

6. The result, CwzCux,vy can be applied to the point p(0,0,0) to find its transformed position
in the 3D conformal coordinate grid.

6.5 Discussion and Future Work

We have introduced a new method of rationalizing cyclidic nets by composing conformal

transformations from orthogonal coordinate surface pairs. Our technique emerges from the

orthogonal decomposition of general conformal transformations uncovered by Dorst and

Valkenburg in [46] and detailed further in [43]. We use concircularity as a constraint to

ensure our bivector point pairs are well-chosen. Constructing spheres with the outer product

of points and bivector tangents, we touch base with contact geometry and the curvilinear co-

ordinates explored by Bobenko and Huhnen-Venedy in [17]. To develop continuous blending
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Figure 6.11: C1 smooth cylidic net surfaces constructed from a series of principal patches.

Figure 6.12: Smooth surfaces can break a corner orthogonally to form nets along a normal.
Three sides are sufficient to uniquely define the remaining three necessary to define a hexa-
hedron volume.
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Figure 6.13: Circular nets can be extended in a third direction to discretize volumes.

Figure 6.14: Discretized volumes used to parametrize the conformal deformation of a sphere.
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techniques we rely on the orthogonal plunge of circle through two coordinate surface spheres.

In contrast to matrix-based rationalization techniques, the incorporation of spinor theory into

geometric algebra allows us to generate transformations through ratios of the coordinate sur-

faces themselves. To help with this, we use a local 6-sphere coordinate system to encode

curvature in every possible direction.

By using geometric algebra we are able to discretize smooth shapes in a way that preserves

the two goals of discrete differential geometry proposed by Bobenko and Suris in [18]: the

transformation group principle (wherein discretizations and their smooth counterparts trans-

form the same way) and the consistency principle (whereby constructions can be extended to

higher dimensions). Because of the structure-preserving nature of conformal transformations

within the CGA mechanism, our composed transformations are as capable of operating on

tangents and normals as well as points, greatly simplifying basic calculations in differential

geometry. We suspect that approaching differential geometry by careful study of integration

of conformal mappings will help in developing the discrete geometric calculus within the

conformal model. In our treatment, our frames are already orthogonal – a condition which

can be applied to non-orthogonal frames using the reciprocal construction of geometric cal-

culus. Hestenes’ writings are, as usual, a good place to start this mapping [68, 72, 75] as

is Sobczyk’s simplicial calculus [125] and the rich literature on discrete exterior calculus

[31, 32]. We would like to more carefully consider the relationship between the rotors that

transforms these spheres across a surface patch and the shape tensor and shape bivector or

curl, to better pin-point the pair generators that most clearly and generally match Hestenes’

definition of the shape bivector as the “angular velocity of the pseudoscalar as it slides along

the manifold” [75]. Explicating such relationships will give more space for a discrete calculus

to form.

A good next step in our formulation will be to analyze an input simplicial surface and try

to find its closest conformal representation through piecewise integration of cyclidic patches.

It is possible that, in order to fully articulate a discete differential geometry, we decide to
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move into the space of R4,2 to allow for geometries other than Möbius, in particular those of

Laguerre. In [18], Bobenko and Suris construct discretizations using Lie Sphere Geometry,

of which the Möbius geometry of Rn+1,1 is one subset and Laguerre geometry the other. In

[97], Liu et al use a Laguerre-based approach to discretization based on conical rather than

circular quad meshes. Recently, Krasauskas has used Laguerre transformations in the geo-

metric algebra model of R4,2 to solve hole-filling problems [86]. As opposed to the Möbius

transformations which preserve points (spheres of zero radius), transformations Laguerre ge-

ometry preserves hyperplanes (spheres of infinite radius). Their combination, Lie Geometry,

preserves oriented contact. The surfaces that can be carved out in these other geometries

include Darboux cyclides, more general versions of the Dupin cyclides depicted here. Thus

having seen the power of rationalization using Möbius transforms, and the demonstrations

of Laguerre transformations in the aforementioned texts, we might consider moving to the

more encompassing Lie Sphere Geometry. Leo Dorst has also suggested potential advan-

tages to working with the Lie Sphere system of oriented contact, for instance for matching

broken pieces of pottery. Luckily, with the universal geometric algebra, one could conduct

such experiments by extending the constructive methods developed here.
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Chapter 7

Conclusion: A Mechanism for Design

7.1 Summary

The current work began as a simple question – how can we design structures with geometric

algebra? The investigation of this question has unfolded into an operational strategy for

spatial composition on a computer: a synthesis of form through transformation. Felix Klein’s

identification of transformation as the central characteristic defining a space is honored by

the model of space adopted here. Geometric algebra allows us to practice the processes

that constitute spatial systems. With enough practice, these processes can lead to a unified

methodology for structural design.

To advance this methodology, we have developed techniques for encoding three proper-

ties of spatial structures – symmetric, kinematic, and curvilinear. Examining transformation

(reflecting, folding, twisting, bending, and knotting), distance constraints (round incidence

relationships), and rationalization (logarithms of ratios) we have implemented a collection

of constructive geometric design techniques with a single unifying spatial computing engine.

This relationship between technique, parameter, property, and structure is outlined in Table

7.1.

From a single axiom relating the dot product to a quadratic product, we modelled a train
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Technique Transformation Incidence Tensor
Parameter Groups Constraint Differential
Property Symmetry Kinematics Curvature
Structure Balanced Deployable Freeform

Table 7.1: The relations between techniques, parameters, properties, and structures that have
been developed in this text.

of thought, first establishing relationship between the geometric product and the associated

algebraic concept of inversion and the fundamental spatial concept of reflection. We then

explored how – from from that algebraic-spatial connection– the catalysis of mathematical

invention generates a coherent system of relationships between geometric numbers. With

these relationships thus crystallized, we explored how they can be used to place constraints

on each other in order to articulate position and orientation in moving structures. Finally, to

demonstrate the elegance achieved, we offered a direct method for rationalizing curved sur-

faces via a tensor product of sphere ratios, and illustrated a method for conformally warping

a mesh using this discretization of curvature.

The three spatial systems selected were not chosen at random. From start to finish we

generated a pedagogy for practice: the notion of a screw displacement as a rotation and a

translation discussed at the end of Chapter 3 is used to model kinematics in Chapter 4. The

logarithm of such motors are used to introduce a method interpolation in Chapter 4, and the

application of such interpolation methods onto general bivectors reveals further forms. In

Chapter 6 these are regimented into the deliberate construction of curvilinear surfaces and

volumes. A single mathematical model of 3D space has proven adequate for designing a

range of spatial configurations. We have not only shown how individual expressions can be

used to generate structures, but the processes by which such expressions can be extrapolated.

Using a comprehensive language of space, our processes can evolve intuitively; further forms

suggest themselves from current manipulations.

Within each Chapter, we argued that the production of geometric expressions enables a

novel way to design structures. Applications of our synthesis techniques include machine
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parts, tensegrity systems, deployable structures, and freeform architecture, bringing the theo-

retical underpinnings of our models one step closer to real-world manufacture. By visualizing

this language of space, we have encouraged the adoption of these algebraic methods by dig-

ital practitioners. We find the expressive powers of the algebra make it an essential tool for

those who seek to develop their spatial thinking.

7.2 Contribution

By restricting ourselves to examining the generative prowess of conformal geometric algebra

model of 3D space, we have pushed the range of forms that have been synthesized from

scratch within this system. We have used constructive techniques – small reusable algebraic

expressions – to demonstrate how a full-featured articulation of space can be developed from

a single framework. Without recourse to mathematical proofs, we have contributed a proof-

of-geometric-concept of the role of geometric algebra in design practice: illustration of the

raw power of these expressions – when used in combination – to generate complex forms.

This work can be characterized as a manual for practicing geometric algebra. It is pre-

cisely the ability to implement symmetry groups, linkage mechanisms, robotic chains, and

rationalized curvilinear surfaces which we offer as crystal-clear evidence of the algebra’s

ability to communicate form. Each synthesis technique has relied heavily on the previous

work of others, both inside and outside the geometric algebra community, and by sheer ne-

cessity we have built upon known algorithms by unearthing details critical to their use in

construction. Throughout we have consistently returned to the groundbreaking textbook by

Dorst, Mann, and Fontijne [45], which provides much of the syntax of geometric relationships

(for instance, the orthogonal plunge of Chapter 6). Through synthesis, we have harnessed the

basic operations of an articulate system into a comprehensive language.

In Chapter 3, we implemented crystal systems, and focussed on transducing the transfor-

mations expressed in Hestenes and Holt in [73] into visual forms, in order to grow comfort-
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able with using symmetry groups as generators of pattern. In doing so, we not only clarified

how such a system can be implemented procedurally on a computer (see, for instance, the

Space Group Visualizer of Hitzer and Perwass [79]), but also discovered a unique way to

experiment with the geometrical design of closed surfaces and tensegrity systems.

In Chapter 4, we implemented kinematic systems based on the motor algebra approach

outlined by Bayro-Corrochano and Kähler in [10]. Applying the FABRIK method of Aristi-

dou and Lasenby in [4] and Aristidou, Chrysanthou, and Lasenby in [3], we detailed our own

specific technique for calculating the inverse kinematics of a chain of revolute joints, where

care must be taken when constructing rotation sequences. As an example of a closed-form

solution, we presented a novel technique for the construction of a Bennett overconstrained

mechanism, and chained these linkages together based on the work of You and Chen in [138].

We then used our new formulas to propose a few designs for articulating structures.

In Chapter 5 we detailed the twist interpolations explicated by Wareham, Cameron and

Lasenby in [134] and the conformal knotted orbits of Dorst and Valkenburg in [46], com-

bining them to model a Hopf fibration and discovering unique commutative properties of

antipodal fibers in the process. This abstract play emerges as an exercise in order to prepare

for Chapter 6 where we developed a novel technique for rationalizing surfaces with ratios of

spheres. We experimented with this system to carve a few surfaces and volumes, and demon-

strated its use in defining conformally warped coordinate systems of use in animation and

architecture. We note that the technique seems extendable to other dimensions.

It is clear that working with a proper language of space significantly reduces time-to-

discovery by ensuring that any geometric experiment can inform a subsequent one. In order

to implement the formulas in this document, it was necessary to write a conformal geometric

algebra library, the implementation of which is outlined in Appendix 2. Two core features

of this library are a) its generic nature – any arbitrary metric is supported and b) its terse

formalism: the expressions are compact. Thus a software library built specifically for the

conformal model can in fact be used to explore other models as well. The tool we built is yet
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another example of the constructive strategy to design enabled by geometric algebra, where

the implementation of a solution to a specific problem induces a general solution to other

as-yet unspecified problems.

7.3 Future Work

Geometric algebra opens the channels of transdisciplinary communication by creating a space

for researchers to extend and share their algorithmic methods. The presence of a unified

framework for synthesizing spatial configurations helps us draw relationships between seem-

ingly disparate fields of geometric computing. By further activating the algebra in the realm

of digital design practice, we have opened participation in the development of spatial research

to visual thinkers. An important step will be collaboration between researchers from com-

puter graphics, materials science, robotics, and structural engineering in order to explore the

use of these methods in practical applications beyond the proof-of-concepts presented here.

Deployable Structures and Origami In Section 2.6 we briefly discussed the use of round

elements as distance constraint parameters in isometric deformations of the plane. Explo-

ration of this topic, perhaps by pairing geometric methods with other distance-constraint

solvers such as Verlet integration, could advance complex configurations such as found in

curved-crease origami or protein folding. The design of a foldable parabolic dish for satellite

deployment, or a collapsible stent for arterial deployment could benefit from combining the

crystallographic studies with such constraint systems.

Software: Plugins and GPU programming Versor, the software library written to sup-

port the geometric investigations of this thesis, should be extended as a plugin module to

other software packages. Such integration will help gather insight from the artistic commu-

nity in the design of spatial structures, and enable the communication of these parameters to

other researchers. Thus it will prove useful to integrate the algorithms developed here into
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plugins for commonly used 3D modelling platforms such as Maya, Cinema4D, Houdini, Au-

todesk CAD, Rhino (and Grasshopper), Catia, as well as modules for creative coding such as

OpenFrameworks and Processing. An online editor written in Javascript would help encour-

age researchers to play with geometric concepts. Python scripts will help scientists accept its

utility in encoding their transformations.

Fabrication Realizing the formulations on these pages in physical form is a way to test

the durability of the reasoning method in constructing actual forms, and the adaptability for

iterating when things go awry in practice. With its exquisite articulation of space, transfor-

mation, and invariance, entire pipelines from design to manufacture can be written in the

language of geometric algebra. Architects can explore geometric positions of spheres and

circles, and structural engineers can probe their work to examine the stresses from within

the same software framework. No more are design and construction separated by mathe-

matics during different phases of manufacturing, but rather holistically treated through one

continuous exploration of form.

Discrete Differential Geometry Geometric algebra has been developed into a rich calculus

and in particular a new approach to differential geometry [75, 72, 68]. To date, only a single

paper (Sobczyk [125]) has tackled the problem of discretization of this calculus, which is

needed in order to fully develop computer-based techniques for mesh manipulation such as

smoothing of meshing of point cloud data. We have helped pave a way forward in the use of

the conformal model for surface and volume rationalization of Chapter 6. A necessary next

step is to analyze a given mesh and find its conformally rationalized parameterization.

Generative Algorithms Once implemented, CGA makes it possible to write programs

which experiment with different geometric traits, access various intersection points, conduct

transformations, and then recalculate results based on some geometrically defined fitness

function such as orthogonality of circles or coplanarity of points. In Section 4.4 we used in-
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tersections of round elements to satisfy distance based constraints, and it is feasible to extend

this method to optimize for even more constaints, an idea presented by Aristidou, Chrysan-

thou, and Lasenby in [3]. Details of specific implementation strategies are an important next

step to such a constraint network. Then, wedding these geometric constraints with adaptive

algorithms could help evolve more articulate movements such as are needed for advanced

design of machines.

Geometric Signal Processing / Geometric Audio As numbers are now imbued with geo-

metric content, any filtering or processing of them using techniques learned in digital signal

processing could be applied to the manipulations of forms. Conversely, the geometric ma-

nipulations of physical relationships could offer new audio synthesis techniques. This will

require pairing Clifford analysis, the field devoted to the study of higher dimensional signal

processing, with more user-friendly audio signal processing, the common element to both be-

ing the bivector exponential eB. Programming languages that help in composition of signals,

such as functional languages, may prove useful here. A collection of software that uses the

functional paradigm to generate structure can be found in Footnote 1.

Topology and Braid Groups The natural transformation of knotted orbits of Section 5.3.3

suggests a potential contribution to the field of topological quantum computing, where infor-

mation is recorded based on braid groups. The various types of conformal orbits also seem

to be of use in continuous deformation of meshes, perhaps serving as continuous topological

operators which can add or remove holes in a surface.

7.4 Final Thoughts

A graduate student asks her professor a simple question:

Student: How do you produce a rotation in 3D? I hear there are issues with
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matrices.

Professor: Yes. Matrices can introduce “gimbal lock”. It is best to use

quaternions.

This is the commonly agreed upon correct answer. Unfortunately, what happens next ignores

an opportunity to fully define the production of proper transformations on a computer. The

quaternion is variously characterized as a sort of complex number of higher order, sometimes

considered a 4-dimensional vector, constrained by identities that seem magically inspired,1

and typically implemented by copying someone else’s code. This most assured recipe for

rotating objects is implemented by graphics programmers without clear understanding of

why their code works. Yet these esoteric “quaternions” are the mathematical objects we use

to construct simple 3D rotations around the origin.

Student: Is it an entity or an operator? In what dimension does it exist? How

do we implement it?

Professor: Sounds like a good homework assignment.

Rather than gloss over the intricacies of how transformations work in computer graphics, let

us examine them more carefully. If we master them, what can we do?

For instance, the quaternion can now itself be understood as the composition of a more

basic operation – the reflection – and is a type of rotor or spinor released from the origin. It is

just one of a number of transformations we can construct from the basic combinatoric system

called geometric algebra. The details of how a rotor is generated and applied are based on

axioms that guide rotations in any dimension. In learning about rotors in general, we can

learn about symmetry groups (a way of generating patterns), rigid body transformations (a

way of generating mechanisms) and rationalization (a way of generating surfaces).
1The story told is that William Hamilton, working on an algebraic mechanism that could be used to multiple

3D vectors together the way complex numbers can in 2D, discovered the formulations i2 = j2
= k2

= i jk =�1
while crossing the Brougham bridge in Ireland.
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A good model of space can do more than calculate space itself. In 1898 Henri Poincaré

wrote On the Foundations of Geometry [115], concluding that “space is not a form of our

sensibility; it is an instrument which serves us not to represent things to ourselves, but to

reason upon things.” The idea that space itself is an instrument to reason finds resonance in the

history of computing, where geometry has provided the backbone to analogue calculators.2

This correlation continues in the digital domain: in his text Calculating Space, Konrad Zuse,

the pioneer computer scientist, arranges a system of “digital particles” to model differential

equations.3 The arrangement of Zuse’s digital particles affect how information is exchanged

between them, creating patterns in the resulting process:4 by this line of thinking, space in

particular can facilitate calculation in general. Zuse’s work points to an important principle:

spatial logic is a cornerstone of computation.

The title of this dissertation is a tribute to Zuse’s Calculating Space. In our case, Articu-

lating Space entails both expressions of geometric concepts – as in articulating the concept

of a imaginary circle – and expressions with geometric concepts – as in an articulating robot

arm. Such a double articulation uses geometric primitives to provide details of relationships

and movements, positioning space itself as both subject being articulated and object doing

the articulating. In this way our spatial intuition gains agency; by using geometry in algebra,

we are empowered to combine what we already know with what we can imagine in order to
2The instrument of space is used by computer scientists who rely on geometric reasoning to drive their cal-

culating machinery. Charles Babbage used a network of differential gears to making a “thinking machine”.
Alfred Kempe found linkage mechanisms could be used to generate any algebraic curves. More recently, Alexei
Kitaev used braids to model topological quantum computing. It is little surprise that a spatial problem is used to
motivate Alonzo Church’s historic essay on computability itself. Church’s treatment, An Unsolvable Problem of
Elementary Number Theory [23], begins with the example problem of determining whether two shapes are sim-
ilar to each other – that is, whether two simplicial manifolds are topologically invariant under homeomorphism.
Spatial concepts pervade the language of calculation: to compute is, etymologically speaking, to put together.
Similarly, to complicate is to fold together.

3Crucially, space is the object and not the subject. A more accurate translation of the title of Zuse’s work,
Rechnender Raum, might be Space, that is Calculating.

4We have not developed such automata for simulating complex behaviors in this text, but the fundamental
mathematical structures we did study are themselves “digital particles” which could augment Zuse’s representa-
tions with significant geometric meaning. For other classic sources on digitization of actions, see Braitenburg’s
Vehicles: Experiments in Synthetic Psychology, which produces teleological behavior from basic orientation
protocols, and A New Kind of Science, in which Wolfram achieves nearly biological behavior through determin-
istic local interactions.
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create constructive tools for discovery.

We have endeavored to use space as an instrument with which to conduct research, pro-

viding details of several synthesis tactics within a larger strategic framework for spatial com-

puting. By tethering our methodology to the axioms of a geometric algebra, we have ensured

that all algorithmic inventions can inform the next problem we tackle. Many discoveries await

the explorer of this system of articulating spaces. We hope it will inspire your own innovative

use of forms in your formulas.
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Appendix A

Compile-Time Geometric Algebra with

C++11

A.1 Summary

Algorithms in this document have been implemented using Versor, a generic lightweight

C++ library for visualizing geometric algebra. This appendix outlines a strategy for compiling

high performance geometric algebras through the functional programming idioms of C++11

template metaprogramming [TMP]. In particular, we provide techniques for listing, sorting,

and evaluating combinatoric instructions at compile time.1

1 While C++ is inherently imperative, its templating framework is inherently functional. Extending this
functional paradigm should be further explored in developing shape grammars. We list here, for reference, a
short compendium of explorations of 3D modelling in the functional style. In an article entitled Functional
Geometry [64], Henderson demonstrates the use of recursion in Scheme language to generate the geometric
tessellations of MC Escher. The approach is developed by Mairson in to outline a constructive approach to
the design of musical instruments, based on the research of the luthier François Denis [37]. Cousineau and
Mauny devote a chapter in [100]to functional programming of drawings, using the language CAML to output
the imperative language PostScript. In Functional Differential Geometry [128], Sussman and Wisdom propose
a functional notation to define the classical calculus of manifolds using Scheme, and provide an example of
modelling electrodynamics. Beynon specifies a definitive programming style for Computer-Assisted Design,
which is similar to functional programming but with assignable variables (In this sense definitive programming is
similar to Lisp programming paradigm)[15]. PLaSM [106] is a functional language extension to FL, a functional
language developed by the IBM research group. PLaSM is specifically geared towards Computer Aided Design
of architecture and outputs VRML (Virtual Reality Modeling Language). Formian is a language developed
by Nooshin that implements formex algebra, a method he developed for “configuration processing” which
manipulates polyhedra and finite elements [105]. Individual formices are graded dimensional elements which
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Designing a software library that is both generic enough to leverage the vast expressivity

of this combinatoric system and efficient enough to be used as a practical substitute for more

commonly used techniques is a challenge. Current optimization strategies typically employ

multi-stage solutions, generating code in one language and optimizing in another. With the

end-user in mind, we aim to streamline the optimization process, reduce compilation time,

and ease cross-platform use, while enabling fluency in n-dimensional vector spaces with arbi-

trary metrics such as R4,1 or R3,3. To accomplish these goals, we created a lightweight library

that can compile quickly across a range of computers and devices. We leverage C++11 vari-

adic templates and constant expressions to build a system of type creation that defines how

any two multivectors combinatorically form new ones. In detailing the system, we look at

compile-time list processing, efficient sorting procedures, and advanced type creation. The

resulting 200kb of code generates inlined instructions of arbitrary metrics in arbitrary di-

mensions at compile time and can run real-time graphics applications on embedded systems.

Accompanying documentation and code, tested on unix-like operating systems, is available

at

versor.mat.ucsb.edu and github.com/wolftype/versor.

A.2 Computer Implementations of Geometric Algebra

The general nature of spatial expressivity is powerful when developing abstract thinking and

building deductive logical systems. But that same genericity is a serious obstacle for imple-

menting code, which is often most efficient when specialized. Indeed, the trade-off between

universal applicability and computational efficiency is so common in programming languages

that the very implementation of GA can serve as a useful way to test a language’s ability to

negotiate this conflict. In [76], Hildenbrand, Fontijne, Perwass and Dorst list four difficul-

can be composed together. The use of functional programming in robotic control has received much attention
with the advent of functional reactive programming [FRP], a method used to organize events and behaviors in
continuous and discrete systems[80, 110].
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ties in developing an efficient GA computational system: the need for a large number of

specialized types, the number of basic operations that must be coded between these types,

the arbitrariness of the metric, and the exponential increase in combinatoric complexity with

each increasing dimension. As a result of these difficulties, software solutions tend to be ei-

ther slow to run, awkward to distribute, or slow to compile. There is little doubt that a major

obstacle in wide-spread adoption of Geometric Algebra is this lack of a coherent software

solution.

The most inefficient methods, such as GABLE for MatLab, store each geometric element

in n-dimensional space in a 2n⇥ 2n matrix. Some faster implementations, such as the C++-

based CluCalc [112], still keep track of which indices into these matrices are being used for

any particular element of the algebra, causing run-time overhead. Multi-stage programming

techniques provide further speed ups to the sparse matrix representation: for instance, Gaalop

[77] is a precompiler which optimizes Clu scripts to run on GPUs. Generative approaches,

such as Gaigen [51], construct implementation generators which output optimized code in

multiple programming languages. This was used to create the GA Sandbox viewer [50]. The

first version of Versor similarly used lua code generation to produce C header files which

were then linked into a dynamic library [27]. The main difficulty in the code generation

approach is that experimentation across metrics requires consistent generation of new code

which makes it difficult to package and deploy a lightweight comprehensive system. These

multi-stage compilations and Domain Specific Languages (DSL) invariably add an extra step

to programming, either requiring the programmer to learn a new scripting language, or im-

plement a second phase of code generation before entering the realm of the algebra. Since

GA is relatively new compared to other mathematical domains, these are extra barriers to

access best eliminated in order to encourage more widespread, immediate, computational

experimentation.

A third approach – the one detailed here – leverages the functional-style metaprogram-

ming capabilities of C++ to instruct the compiler to generate efficient code at compile time.
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The software library that most closely resembles the one designed here is Gaalet [124]. The

main differences are that Gaalet creates expression templates, which adds significantly to

compile time, and does not include an optimized version of the conformal model, which

is the most useful for the work developed in this thesis. Jaap Suter’s Clifford library was

also a metatemplated approach, though it seems to be no longer supported. Robert Valken-

burg is also known to have experimented with expression-templating techniques using the

Boost::Proto library for creating domain specific languages, though no publication of this

work exists to date. Versor contains more than just an implementation of geometric alge-

bra: it includes numerous classes and wrappers around the types of structure-forming and

space-articulating algorithms included here.

Formal explanations of how the functional paradigm of metaprogramming maps to an ef-

ficient implementation of geometric algebra application using templates has yet to be written.

However, purely functional implementations do exist as well. In [54] Fuchs and Théry exam-

ine a functional implementation of Geometric Algebra using binary trees, though it is unclear

how to experiment with alternative metrics in that formulation. Modules for Mathematica

[107, 2], and a symbolic parser for SymPy [19] are also inherently functional.

Finally, hardware accelerated approaches, which leverage FPGAs and embedded proces-

sors, have begun emerging as well [102, 53, 113].

A.3 Implementation Goals

We seek to ease the access to efficient GA by implementing a single-stage pure C++ templat-

ing alternative to the multi-stage approach. We submit that doing so facilitates development

of generic GA code, including higher dimensional constructs and alternative geometries. We

address each of the difficulties above in a lightweight header-only library of about 200kb.

No domain specific languages must be learned, and no heavy reliance on standard template

libraries. This allows us to investigate what is possible within native syntax and ensures
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portability of use across any machine with an adequate C++11 compiler. Integration with any

language that has a C-like api of course remains possible: using the Clang compiler, we can

compile to intermediate representation and translate to other languages from there.

Advantages to keeping everything in one C++ language environment with minimal use of

standard template libraries include:

1. Portable – software deployment is easier when no secondary language support is

needed, anyone with gcc4.7 or clang3.2 or above can compile with a simple Make-

file. This library can run natively on the RaspberryPi, for instance, or a smartphone.

No new scripting language needs to be learned.

2. Stable - the strongly-typed templating system can help reduce run-time errors since the

compilation phase is more strict.

3. Integrable with other C++ libraries - multimedia programming, for instance, is an

increasingly more common application of GA and the ability to include other templated

libraries in one project enables the algebra to be used in other contexts, such as audio

programming.

4. Translatable - using Clang and LLVM, it is possible to leverage the universality of

C-like languages to compile the library to used as an extension in any other language.

5. Compilable - Restriction of other standard template libraries enables fine-tuning of

tuple-like classes for domain specific compilation

We face two major disadvantages that we hope to work towards eliminating or minimizing,

but that are common to generic programming with C++.

1. Template generation in C++ is still slow relative to interpreted languages like lua. While

we can significantly decrease compile times by creating a library of pre-instantiated

types, the template-depth limits to recursion remain obstacles when compiling algebras

for dimensions higher than 10.
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2. Template programming techniques employed here require experts to parse and con-

tribute – the guts of the code is not inherently clean or as readable as a DSL might

be.

A.4 An Example: Generating G 3

Before examining the inside of our template library, let us start with an example to show how

one might instantiate G 3 using the Versor library.

G 3 is the algebra of Euclidean R3, the common space of vectors and quaternions with

which most programmers are familiar. To instantiate a 3-dimensional vector, we use the

NEVec<> class, which is an N-dimensional Euclidean vector templated on N, the dimension:

1 typedef NEVec<3> Vec3;
2
3 Vec3 a(1,2,3);
4 Vec3 b(4,5,6);
5
6 auto ip = a <= b;
7 auto op = a ^ b;
8 auto gp = a * b;
9

10 ip.print(); op.print(); gp.print();

which prints out the inner product:

1 blades:
2 s 000
3
4 values:
5 32.000000

where s is a scalar value and 000 delineates the 0-grade of the result. Next is printed the
outer product:

1 blades:
2 e12 011
3 e13 101
4 e23 110
5
6 values:
7 -3.000000 -6.000000 -3.000000
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where the bit lists here show us which dimensions are present in each blade. Finally we fetch
the geometric product (a combination of inner and outer products):

1 blades:
2 s 000
3 e12 011
4 e13 101
5 e23 110
6
7 values:
8 32.000000 -3.000000 -6.000000 -3.000000

The final type is that of a rotor, or quaternion. While the actual instructions for calcu-

lating these results are generated at compile time, we can of course still print them out. For

instance, the comma-separated instructions for generating the Euclidean outer product of two

3D vectors can be fetched:

1 EOProd< Vec3, Vec3>::DO().print();

which prints out:

1 a[0] * b[1] /

*

e12

*

/ -a[1] * b[0] /

*

e12

*

/,
2 a[0] * b[2] /

*

e13

*

/ -a[2] * b[0] /

*

e13

*

/,
3 a[1] * b[2] /

*

e23

*

/ -a[2] * b[1] /

*

e23

*

/

which shows us how the outer product is computed by indexing the data of two inputs a and
b. Whereas in typical algebraic code generating applications, these instructions are printed
into headers which are then compiled, our method generates them as type-specific execution
lists at compile-time.

Of course we are not restricted to 3 dimensions. For instance we can print the instructions

generated by the compiler for calculating the outer product of two 4-dimensional Vectors:

1 EOProd< NEVec<4>, NEVec<4> >::DO().print();

which prints out:

1 a[0] * b[1] /

*

e12

*

/ -a[1] * b[0] /

*

e12

*

/,
2 a[0] * b[2] /

*

e13

*

/ -a[2] * b[0] /

*

e13

*

/,
3 a[1] * b[2] /

*

e23

*

/ -a[2] * b[1] /

*

e23

*

/,
4 a[0] * b[3] /

*

e14

*

/ -a[3] * b[0] /

*

e14

*

/,
5 a[1] * b[3] /

*

e24

*

/ -a[3] * b[1] /

*

e24

*

/,
6 a[2] * b[3] /

*

e34

*

/ -a[3] * b[2] /

*

e34

*

/
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blade bits grade
a 000 0
e1 001 1
e2 010 1
e3 100 1
e12 011 2
e13 101 2
e23 110 2
e123 111 3

Table A.1: Binary Representation of Basis Blades in G 3

A.5 Blade Basics and Constant Expressions

Our implementation integrates three basic techniques:

1. Short integers are used to represent blades, following the convention outlined in [45]

and described in table A.1.

2. Constant expressions are used for manipulating the combinations of particular blades.

3. Variadic templates are used for defining Multivectors

Table A.1 depicts the blade representations for G 3 outlined in [45]. The number of “on” bits

determines the grade of the blade and the position of the bits encodes the particular bases

present.

Since we do not plan to go above 16 dimensional representations, in our implementation

we typedef this as a short integer:

1 typedef short bit_type;

Using this bit representation, Dorst, Mann, and Fontijne have shown that the geomet-

ric product between two blades can be calculated as an xor operation, along with some bit

twiddling to determine whether a negation emerges as well as a result of anti-commutativity.

Similar bit operations enable calculation of whether inner or outer products should “count”,

that is, whether they result in a new blade or 0. Their simple methods for determining these

true or false statements are written below in algorithms A.2,A.3,A.4, and A.5.
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Since most of this algorithms require knowing the grade of the blade, we first examine a

recursive algorithm calculates the number of “on” bits at compile time:

Algorithm A.1 Get Grade of Blade a
function GRADE(a, c = 0)

if a > 0 then
if a&1 then

return GRADE(a� 1, c+1) .�:bitshift right
else

return GRADE(a� 1,c)
else

return c
end function

In C++11 compile-time constant expressions we code this using ternary operators:

1 constexpr short grade (short a, short c = 0){
2 return a>0 ? (
3 a&1 ?
4 grade( a>>1, c+1 ) : grade( a>>1, c )
5 )
6 : c;
7 }

In pseudocode we can write the algorithms of Dorst et al, such as the xor product and the

signflip.

Algorithm A.2 Geometric Product of Basis Blades
function PRODUCT(A, B)

r A�B . �: bitwise XOR
return r

end function
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Algorithm A.3 Check for Sign Flip of Geometric Product of a and b
function SIGN(a,b,c)

if (a� 1)> 0 then
return SIGN(a� 1, b, c+GRADE(a� 1&b))

else
if c&1 then

return true
else

return false
end function

The INNER() and OUTER() functions check whether those products should be calculated.

Algorithm A.4 Check for Inner Product (Left Contraction)
function INNER(a,b)

ga GRADE(a), gb GRADE(b), gab GRADE(a^b)
if ga > gb or gab 6= gb�ga then

return true
else

return false
end function

Algorithm A.5 Check for Outer Product
function OUTER(a,b)

return not a&b
end function

We use constant expressions to evaluate at compile time whether or not the inner or outer

products should be calculated:

1 constexpr bool inner(short a, short b) {
2 return !(
3 (grade(a) > grade(b)) ||
4 (grade(a ^ b) != (grade(b) - grade(a))) );
5 }

1 constexpr bool outer(short a, short b){
2 return !( a & b );
3 }
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and use a similar method for programming the sign flip check.

Algorithm A.6 Order Comparison
function COMPARE(a,b)

ga GRADE(a)
gb GRADE(b)
if a == b then

return a < b
else

return ga < gb
end function

A.6 Multivectors and Variadic Templates

We define a Multivector as a templated list of shorts. First we define the generic empty set:

1 template<short ... XS>
2 struct MV{
3 static const int Num = 0;
4 };

where the “...” represents a variadic template of variable arguments. Note that it is some-
what counterintuitive that the empty set is the generic template. The specialized template,
below, is instantiated when there is at least one basis.

1 typedef float VT;
2
3 template<TT X, TT ... XS>
4 struct MV<X, XS...>{
5
6 static const TT HEAD = X;
7 typedef MV<XS...> TAIL;
8
9 static const int Num = sizeof...(XS) + 1;

10 VT val[Num];
11
12 template<typename ... Args>
13 constexpr explicit MV(Args...v) :
14 val{ static_cast<VT>(v)...} {}
15 }

Thus when we call MV<>()we instantiate an empty set and when we call MV<1,2,4>()

we instantiate a 3D vector with binary basis: 001,010,100. Note the similarity to func-
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tional programming languages like Haskell or O’Caml where one works with a “HEAD” (in

our case x and a “TAIL” (in our case ...XS). The TAIL is recursively instantiates subtypes

until XS... is empty, at which point the empty set is returned.

We can combine two such lists together using a concatenation operation called Cat.

1 template<class A, class B>
2 struct Cat{
3 typedef MV<> Type;
4 };
5
6 template<TT ... XS, TT ... YS>
7 struct Cat< MV<XS...>, MV<YS...> > {
8 typedef MV<XS..., YS...> Type;
9 };

The Cat template leverages the simplicity of variadic templates to manage type construc-

tion. Our approach adopts a functional style for managing more complex type creation that

emerges through the compile-time evaluation of basic basis operations. Each operation on

our multivector (MV) type is a templated struct with a limiting special case. Critical to this is

the employment of a Either type constructor, which defines a type A if the first templated

parameter is true, and otherwise returns type B.

1 template<bool, class A, class B>
2 struct Either{
3 typedef A Type;
4 };
5
6 template<class A, class B>
7 struct Either<false,A,B>{
8 typedef B Type;
9 };

As an example of the use of the COMPARE constant expression function, the CAT type

constructor, and the EITHER type constructor, let us consider a procedure that inserts a basis

blade (represented by a short) into a multivector (represented by a variadic template of shorts).

It is a functional sorting procedure.
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Algorithm A.7 Insert-Sort
procedure INSERT(a, R, F = MV<>)

isLessT han COMPARE(a, R::HEAD)
catF  CAT(CAT(F ,MV<a>), R)
catR CAT(F ,MV<R::HEAD>)
return Type EITHER(isLessT han, catF , INSERT(a, R::TAIL, catR)

end procedure

We begin with a basis blade a, a multivector list of blades R, and an empty set F. We use

our COMPARE function to evaluate whether a should be considered “less than” or “greater

than” the first basis of the multivector, R::HEAD. Two options are available depending on

this compile-time compare: we can either pop the blade in the front, or we can iterate the

function, considering this time the tail of R and setting the head as F for future use. We

keep track of this head as it increases with each iteration. Note that we will need to add

another conditional branch to check to see if it is equal to R::HEAD. If it is equal, that means

it already exists in our list R and so we do not insert a. This is accomplished during the

REDUCE method discussed below.

1 template <int A, class Rest, class First=MV<> >
2 struct Insert{
3 typedef typename Either<
4
5 compare<A, Rest::HEAD>(),
6
7 typename Cat<
8 typename Cat<
9 First,

10 MV<A>
11 >::Type,
12 Rest
13 >::Type,
14
15 typename Insert<
16 A,
17 typename Rest::TAIL,
18 typename Cat<
19 First,
20 MV<Rest::HEAD>
21 >::Type
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22 >::Type
23
24 >::Type Type;
25 };
26
27 template <int A, class First>
28 struct Insert<A, MV<>, First>{
29 typedef typename Cat< First, MV<A> >::Type Type;
30 };

Because C++ template instantiations are eager and slow, this insert-and-sort technique is

a rather naive implementation. In our actual implementation we use additional branching to

provide opportunities to exit the recursive loop early. For instance, the INSERT metafunction

calls an INSERTIMPL metafunction which has different instantiations depending on whether

the blade already exists in the list to which it is being added.

A.7 Geometric Products and Instruction Lists

As we have discussed, geometric algebra defines three basic binary operators between any

two multivectors A and B: the inner, outer, and geometric products. We consider first the

geometric product.

The geometric product between two multivectors is a distributed multiplication: for each

blade ai in A, calculate its product with each blade bi in B. As we have seen, we represent the

new blades that emerge from this multiplication with the xor operator, and we assign a weight

to it that is simply the product of the two blades - negating the weight if the anti-commutative

property of the algebra requires us to do so.

We must generate a list of instructions at compile-time which can then be executed to

evaluate the weighted basis of a new multivector at compile-time (or run-time). That is, the

return type and combinatoric rules for how the basis blades combine must be evaluated at

compile-time, but the actual weights can be evaluated at run-time.

To store this information at compile-time, we define an Inst struct that can be used to

184



calculate one element. It is fed a boolean value used to determine whether or not to negate the

product, two basis blades, and two indices. Most importantly, it stores the result of the xor

product of two input basis blades, a boolean for whether or not the inner and outer products

should be evaluated. Its Exec() method returns the product of two indices of two particular

multivector arguments.

1 template<bool F, short A, short B, int IDXA, int IDXB>
2 struct Inst{
3 static const short Res = A ^ B;
4 static const bool IP = inner(A,B);
5 static const bool OP = outer(A,B);
6 static const int idxA = IDXA;
7 static const int idxB = IDXB;
8
9 template<class TA, class TB>

10 static constexpr
11 VT Exec( const TA& a, const TB& b){
12 return a[idxA] * b[idxB];
13 }
14 };

A slightly different specialized version of the struct is instantiated when the SIGNFLIP

check returns true:

1 template<bool F, short A, short B, int IDXA, int IDXB>
2 struct Inst{
3 ...//as above

4
5 template<class TA, class TB>
6 static constexpr
7 VT Exec( const TA& a, const TB& b){
8 return -a[idxA] * b[idxB];
9 }

10 };

These instructions are generated when two multivectors are multiplied together. The al-

gorithm below demonstrates this process, whereby a main method, GP, calls a subroutine,

SUBGP, inorder to recursively iterate through two lists distributively.
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Algorithm A.8 Building Instructions
procedure SUBGP(a,B)

if B=/0 then
return /0

else
inst INST(a, B::HEAD)
return CAT(inst, SUBGP(a, B::TAIL) )

end procedure
procedure GP(A,B)

if A=/0 then
return /0

else
return CAT( SUBGP(A::HEAD,B), GP(A::TAIL,B )

end procedure

Inner and Outer product instructions are similarly built, with the exception that we use the

EITHER type constructor to only add in blades that should count towards the result. No such

check is necessary with the geometric product.

In order to save compile-time, we use the calculations contained in the instruction struc-

ture in order to determine return type of two multivectors. The product of two blades is

contained in the Res static member, and that is what we want to gather, reduce, and sort.

With our functional approach we first define a recursive template for determining whether

a blade exists in a multivector.

Algorithm A.9 Check for Existence of Blade in a Multivector
procedure EXISTS(a,M)

if M = /0 then return false
else

if a ==M::HEAD then
return true

else
return EXISTS(a, M::TAIL)

end procedure

1 template<short N, class M>
2 struct Exists{
3 static constexpr bool Call() {

186



4 return M::HEAD == N ?
5 true :
6 Exists<N, typename M::TAIL>::Call();
7 }
8 };
9

10 template<TT N>
11 struct Exists< N, MV<> >{
12 static constexpr bool Call() { return false; }
13 };

To determine the return type from a list of instructions, we reduce the output to include

only the different types. We employ another technique from functional programming, wherein

we start at the end with an empty set, and recursively add in non-existing blades starting from

from the tail of the instruction list. Thus we define the end case first, recursively adding in

the tail if whether the last element is a member.

Algorithm A.10 Multivector Return Type from an Instruction List
procedure REDUCE(I)

M REDUCE(I::TAIL) . Recursion
A INSERT(I::HEAD, M)
Type EITHER( EXISTS(I::HEAD::Res, M), M, A)
return Type

end procedure

1 template<class X>
2 struct Reduce{
3 typedef typename Reduce<typename X::TAIL>::Type M;
4 typedef typename Maybe<
5 Exists< X::HEAD::Res, M>::Call() ,
6 M,
7 typename Insert<
8 X::HEAD::Res, M
9 >::Type

10 >::Type Type;
11 };
12
13 template<>
14 struct Reduce<XList<> >{
15 typedef MV<> Type;
16 };
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We have not explained how we have been storing these instructions as they were generated

for the GP procedure: we define another type of variadic template, an XList<typename

... XS> which is like a std::tuple except that it includes methods for executing

instructions in the template parameter packs, and instantiating types using those instructions.

Similar to our MV type, we first define the empty set:

1 template< typename ... XS >
2 struct XList{
3
4 template<class A, class B>
5 static constexpr
6 VT Exec(const A& a, const B& b){
7 return 0;
8 }
9

10 template<class R, class A, class B>
11 static constexpr MV<> Make(const A& a, const B& b){
12 return MV<>();
13 }
14
15 };

and then specialize the template for when there is at least one template parameter:
1 template< typename X, typename ... XS >
2 struct XList<X,XS...>{
3
4 typedef X HEAD;
5 typedef XList<XS...> TAIL;
6
7 template<class A, class B>
8 static constexpr
9 VT Exec(const A& a, const B& b){

10 return X::Exec(a,b) + TAIL::Exec(a,b);
11 }
12
13 template<class R, class A, class B>
14 static constexpr R Make(const A& a, const B& b){
15 return R(X::Exec(a,b), XS::Exec(a,b)...);
16 }
17 };

Upon instantiating an operation, a geometric product is calculated by first generating an

individual instruction for each product of each basis of multivector A with each basis of
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multivector B. We then sort these instructions by return type and create a list of instructions

for each blade in the return multivector. We gather these lists into one list, and the result is

a list of lists of instructions: when two multivectors are multiplied together, the instruction

list executes each of its children instruction lists, which in turn sum each of its children

instructions together to form one computation for one blade.

To accomplish this organization, we need to sort the instructions into each element in the

return type that it will contribute to. For each element in the return type, we build a list of

instructions.

Algorithm A.11 Sorting Instructions
procedure FIND(()a,A)

if A=/0 then
return /0

else
next FIND(a,A::TAIL)
cat CAT(A::HEAD, next)
list EITHER(a ==A::HEAD::Res, cat, next )

end procedure
procedure INDEX(A,B)

if B=/0 then
return /0

else
one FIND(B::HEAD,A)
list CAT(one, INDEX(A,B::TAIL) )

end procedure

1 template< int N, class A >
2 struct FindAll {
3 typedef typename

4 FindAll< N, typename A::TAIL>::Type Next;
5
6 typedef typename

7 Either< A::HEAD::Res == N,
8 typename XCat<
9 XList< typename A::HEAD >,

10 Next
11 >::Type,
12 Next
13 >::Type Type;
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14 };
15
16 template< int N >
17 struct FindAll< N, XList<> >{
18 typedef XList<> Type;
19 };
20
21
22 template< class I, class R >
23 struct Index{
24
25 typedef typename FindAll<R::HEAD, I>::Type One;
26 typedef typename

27 XCat<
28 XList< One > ,
29 typename Index < I, typename R::TAIL >::Type
30 >::Type Type;
31
32 };
33 template< class I>
34 struct Index< I, MV<> > {
35 typedef XList<> Type;
36 };

Finally, we are able to execute our products using the sorted list of instructions for doing

so.

Algorithm A.12 Executing Products
procedure MAKEGP(A,B)

inst INST(A,B)
R REDUCE(inst)
list INDEX(inst,R)
return list(A,B)

end procedure

A.8 Discussion

Geometric algebra, a hypercomplex algebra of exponential increase in types, is a prime candi-

date for the exploration of C++11 tools such as variadic templates and parameter unpacking,

which provide the developer with a novel tool for implementing efficient combinatoric in-

190



structions at compile-time. We have outlined here the process for pure type construction of

Geometric algebra multivectors. Changing or splitting the underlying metric, as is necessary

in the conformal model [45] is also present in the online code base. This code has been used

to model the problems presented in this dissertation.

We hope that by providing the programming community with a lightweight templated

header-only library, geometric algebra will be adopted by a larger group of people. Likewise,

we hope that by introducing the geometric algebra community to the prowess of C++11 tem-

plate metaprogramming, we can begin to search for more single-language solutions to the

complex problem of programming hypercomplexity. It is also expected that colleagues will

find ways for making the cpu code more efficient, or make use of other C++ idioms than we

have explored here.

If implemented generically, geometric algebra can narrow the gap between the conceptual

model of space and its digital encoding on a computer. There is a subtle friction between the

structures represented by a computer (a circle for instance) and the structure of the representa-

tions themselves (three coordinates, an orientation and a radius), and any formal investigation

into the structure of a mathematics of structure is a chance to find their fault-line. A good

model of space preserves structures across this divide, allowing experiments on a computer

to inform our geometric intuition.
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Appendix B

2D Crystallographic Space Groups

Oblique Rectangular

p1 cm pg

p2 cmm pmm
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Rectangular

pm pgg pmg

Square

p4 p4m p4g

Trigonal

p3 p3m1 p31m

193



Hexagonal

p6 p6m
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